• Title/Summary/Keyword: prediction accuracy

Search Result 3,785, Processing Time 0.032 seconds

Development of a Metabolic Syndrome Classification and Prediction Model for Koreans Using Deep Learning Technology: The Korea National Health and Nutrition Examination Survey (KNHANES) (2013-2018)

  • Hyerim Kim;Ji Hye Heo;Dong Hoon Lim;Yoona Kim
    • Clinical Nutrition Research
    • /
    • v.12 no.2
    • /
    • pp.138-153
    • /
    • 2023
  • The prevalence of metabolic syndrome (MetS) and its cost are increasing due to lifestyle changes and aging. This study aimed to develop a deep neural network model for prediction and classification of MetS according to nutrient intake and other MetS-related factors. This study included 17,848 individuals aged 40-69 years from the Korea National Health and Nutrition Examination Survey (2013-2018). We set MetS (3-5 risk factors present) as the dependent variable and 52 MetS-related factors and nutrient intake variables as independent variables in a regression analysis. The analysis compared and analyzed model accuracy, precision and recall by conventional logistic regression, machine learning-based logistic regression and deep learning. The accuracy of train data was 81.2089, and the accuracy of test data was 81.1485 in a MetS classification and prediction model developed in this study. These accuracies were higher than those obtained by conventional logistic regression or machine learning-based logistic regression. Precision, recall, and F1-score also showed the high accuracy in the deep learning model. Blood alanine aminotransferase (β = 12.2035) level showed the highest regression coefficient followed by blood aspartate aminotransferase (β = 11.771) level, waist circumference (β = 10.8555), body mass index (β = 10.3842), and blood glycated hemoglobin (β = 10.1802) level. Fats (cholesterol [β = -2.0545] and saturated fatty acid [β = -2.0483]) showed high regression coefficients among nutrient intakes. The deep learning model for classification and prediction on MetS showed a higher accuracy than conventional logistic regression or machine learning-based logistic regression.

Concrete properties prediction based on database

  • Chen, Bin;Mao, Qian;Gao, Jingquan;Hu, Zhaoyuan
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.343-356
    • /
    • 2015
  • 1078 sets of mixtures in total that include fly ash, slag, and/or silica fume have been collected for prediction on concrete properties. A new database platform (Compos) has been developed, by which the stepwise multiple linear regression (SMLR) and BP artificial neural networks (BP ANNs) programs have been applied respectively to identify correlations between the concrete properties (strength, workability, and durability) and the dosage and/or quality of raw materials'. The results showed obvious nonlinear relations so that forecasting by using nonlinear method has clearly higher accuracy than using linear method. The forecasting accuracy rises along with the increasing of age and the prediction on cubic compressive strength have the best results, because the minimum average relative error (MARE) for 60-day cubic compressive strength was less than 8%. The precision for forecasting of concrete workability takes the second place in which the MARE is less than 15%. Forecasting on concrete durability has the lowest accuracy as its MARE has even reached 30%. These conclusions have been certified in a ready-mixed concrete plant that the synthesized MARE of 7-day/28-day strength and initial slump is less than 8%. The parameters of BP ANNs and its conformation have been discussed as well in this study.

A Tracking System Using Location Prediction and Dynamic Threshold for Minimizing SMS Delivery

  • Lai, Yuan-Cheng;Lin, Jian-Wei;Yeh, Yi-Hsuan;Lai, Ching-Neng;Weng, Hui-Chuan
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • In this paper, a novel method called location-based delivery (LBD), which combines the short message service (SMS) and global position system (GPS), is proposed, and further, a realistic system for tracking a target's movement is developed. LBD reduces the number of short message transmissions while maintaining the location tracking accuracy within the acceptable range. The proposed approach, LBD, consists of three primary features: Short message format, location prediction, and dynamic threshold. The defined short message format is proprietary. Location prediction is performed by using the current location, moving speed, and bearing of the target to predict its next location. When the distance between the predicted location and the actual location exceeds a certain threshold, the target transmits a short message to the tracker to update its current location. The threshold is dynamically adjusted to maintain the location tracking accuracy and the number of short messages on the basis of the moving speed of the target. The experimental results show that LBD, indeed, outperforms other methods because it satisfactorily maintains the location tracking accuracy with relatively fewer messages.

A Cross-Validation of SeismicVulnerability Assessment Model: Application to Earthquake of 9.12 Gyeongju and 2017 Pohang (지진 취약성 평가 모델 교차검증: 경주(2016)와 포항(2017) 지진을 대상으로)

  • Han, Jihye;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.649-655
    • /
    • 2021
  • This study purposes to cross-validate its performance by applying the optimal seismic vulnerability assessment model based on previous studies conducted in Gyeongju to other regions. The test area was Pohang City, the occurrence site for the 2017 Pohang Earthquake, and the dataset was built the same influencing factors and earthquake-damaged buildings as in the previous studies. The validation dataset was built via random sampling, and the prediction accuracy was derived by applying it to a model based on a random forest (RF) of Gyeongju. The accuracy of the model success and prediction in Gyeongju was 100% and 94.9%, respectively, and as a result of confirming the prediction accuracy by applying the Pohang validation dataset, it appeared as 70.4%.

Developing a Pedestrian Satisfaction Prediction Model Based on Machine Learning Algorithms (기계학습 알고리즘을 이용한 보행만족도 예측모형 개발)

  • Lee, Jae Seung;Lee, Hyunhee
    • Journal of Korea Planning Association
    • /
    • v.54 no.3
    • /
    • pp.106-118
    • /
    • 2019
  • In order to develop pedestrian navigation service that provides optimal pedestrian routes based on pedestrian satisfaction levels, it is required to develop a prediction model that can estimate a pedestrian's satisfaction level given a certain condition. Thus, the aim of the present study is to develop a pedestrian satisfaction prediction model based on three machine learning algorithms: Logistic Regression, Random Forest, and Artificial Neural Network models. The 2009, 2012, 2013, 2014, and 2015 Pedestrian Satisfaction Survey Data in Seoul, Korea are used to train and test the machine learning models. As a result, the Random Forest model shows the best prediction performance among the three (Accuracy: 0.798, Recall: 0.906, Precision: 0.842, F1 Score: 0.873, AUC: 0.795). The performance of Artificial Neural Network is the second (Accuracy: 0.773, Recall: 0.917, Precision: 0.811, F1 Score: 0.868, AUC: 0.738) and Logistic Regression model's performance follows the second (Accuracy: 0.764, Recall: 1.000, Precision: 0.764, F1 Score: 0.868, AUC: 0.575). The precision score of the Random Forest model implies that approximately 84.2% of pedestrians may be satisfied if they walk the areas, suggested by the Random Forest model.

Development of Big Data-based Cardiovascular Disease Prediction Analysis Algorithm

  • Kyung-A KIM;Dong-Hun HAN;Myung-Ae CHUNG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.3
    • /
    • pp.29-34
    • /
    • 2023
  • Recently, the rapid development of artificial intelligence technology, many studies are being conducted to predict the risk of heart disease in order to lower the mortality rate of cardiovascular diseases worldwide. This study presents exercise or dietary improvement contents in the form of a software app or web to patients with cardiovascular disease, and cardiovascular disease through digital devices such as mobile phones and PCs. LR, LDA, SVM, XGBoost for the purpose of developing "Life style Improvement Contents (Digital Therapy)" for cardiovascular disease care to help with management or treatment We compared and analyzed cardiovascular disease prediction models using machine learning algorithms. Research Results XGBoost. The algorithm model showed the best predictive model performance with overall accuracy of 80% before and after. Overall, accuracy was 80.0%, F1 Score was 0.77~0.79, and ROC-AUC was 80%~84%, resulting in predictive model performance. Therefore, it was found that the algorithm used in this study can be used as a reference model necessary to verify the validity and accuracy of cardiovascular disease prediction. A cardiovascular disease prediction analysis algorithm that can enter accurate biometric data collected in future clinical trials, add lifestyle management (exercise, eating habits, etc.) elements, and verify the effect and efficacy on cardiovascular-related bio-signals and disease risk. development, ultimately suggesting that it is possible to develop lifestyle improvement contents (Digital Therapy).

Discriminant Modeling for Pattern Identification Using the Korean Standard PI for Stroke-III (한국형 중풍변증 표준 III을 이용한 변증진단 판별모형)

  • Kang, Byoung-Kab;Ko, Mi-Mi;Lee, Ju-Ah;Park, Tae-Yong;Park, Yong-Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.6
    • /
    • pp.1113-1118
    • /
    • 2011
  • In this paper, when a physician make a diagnosis of the pattern identification (PI) in Korean stroke patients, the development methods of the PI classification function is considered by diagnostic questionnaire of the PI for stroke patients. Clinical data collected from 1,502 stroke patients who was identically diagnosed for the PI subtypes diagnosed by two physicians with more than 3 years experiences in 13 oriental medical hospitals. In order to develop the classification function into PI using Korean Stroke Syndrome Differentiation Standard was consist of the 44 items (Fire heat(19), Qi deficiency(11), Yin deficiency(7), Dampness-phlegm(7)). Using the 44 items, we took diagnostic and prediction accuracy rate through of discriminant model. The overall diagnostic and prediction accuracy rate of the PI subtypes for discriminant model was 74.37%, 70.88% respectively.

A Study on Classification Evaluation Prediction Model by Cluster for Accuracy Measurement of Unsupervised Learning Data (비지도학습 데이터의 정확성 측정을 위한 클러스터별 분류 평가 예측 모델에 대한 연구)

  • Jung, Se Hoon;Kim, Jong Chan;Kim, Cheeyong;You, Kang Soo;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.7
    • /
    • pp.779-786
    • /
    • 2018
  • In this paper, we are applied a nerve network to allow for the reflection of data learning methods in their overall forms by using cluster data rather than data learning by the stages and then selected a nerve network model and analyzed its variables through learning by the cluster. The CkLR algorithm was proposed to analyze the reaction variables of clustering outcomes through an approach to the initialization of K-means clustering and build a model to assess the prediction rate of clustering and the accuracy rate of prediction in case of new data inputs. The performance evaluation results show that the accuracy rate of test data by the class was over 92%, which was the mean accuracy rate of the entire test data, thus confirming the advantages of a specialized structure found in the proposed learning nerve network by the class.

Techniques for Yield Prediction from Corn Aerial Images - A Neural Network Approach -

  • Zhang, Q.;Panigrahi, S.;Panda, S.S.;Borhan, Md.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.18-28
    • /
    • 2002
  • Neural network based models were developed and evaluated for predicting corn yield from aerial images based on 1998 and 1994 image data. The model used images in multi-spectral bands such as R, G, B, and IR (Red, Green, Blue and Infrared). The inputs to the neural network consisted of mean and standard deviation of multispectral bands of the aerial images. Performances of several neural network architectures using back-propagation with momentum were compared. The maximum yield prediction accuracy obtained was 97.81%. The BPNN model prediction accuracy could be enhanced by using more number of observations to the model, other data transformation techniques, or by performing optical calibration of the aerial image.

  • PDF

Financial Distress Prediction Models for Wind Energy SMEs

  • Oh, Nak-Kyo
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.75-82
    • /
    • 2014
  • The purpose of this paper was to identify suitable variables for financial distress prediction models and to compare the accuracy of MDA and LA for early warning signals for wind energy companies in Korea. The research methods, discriminant analysis and logit analysis have been widely used. The data set consisted of 15 wind energy SMEs in KOSDAQ with financial statements in 2012 from KIS-Value. We found that five financial ratio variables were statistically significant and the accuracy of MDA was 86%, while that of LA is 100%. The importance of this study is that it demonstrates empirically that financial distress prediction models are applicable to the wind energy industry in Korea as an early warning signs of impending bankruptcy.