• Title/Summary/Keyword: predictable navigation

Search Result 15, Processing Time 0.026 seconds

Development of an Algorithm for Predictable Navigation and Collision Avoidance Using Pattern Recognition of an Obstacle in Autonomous Mobile Robot (장애물 패턴을 이용한 자율이동로봇의 예측주행 및 충돌회피 알고리즘 개발)

  • Lee, Min-Chul;Kim, Bum-Jae;Lee, Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.113-123
    • /
    • 2000
  • In the navigation for a mobile robot, the collision avoidance with unexpected obstacles is essential for the safe navigation and it is independent of the technique used to control the mobile robot. This paper presents a new collision avoidance algorithm using neural network for the safe navigation of the autonomous mobile robot equipped with CAN and ultrasonic sensors. A tracked wheeled mobile robot has a stability and an efficiency to move on a rough ground. And its mechanism is simple. However it has difficulties to recognize its surroundings. Because the shape of the tracked wheeled mobile robot is a square type, sensor modules are generally located on the each plane surface of 4 sides only. In this paper, the algorithm using neural network is proposed in order to avoid unexpected obstacles. The important character of the proposed algorithm is to be able to detect the distance and the angle of inclination of obstacles. Only using datum of the distance and the angle, informations about the location and shape of obstacles are obtained, and then the driving direction is changed. Consequently, this algorithm is capable of real time processing and available for a mobile robot which has few sensor modules or the limited sensing range such as a tracked wheeled mobile robot. Effectiveness of the proposed algorithm is illustrated through a computer simulation and an experiment using a real robot.

  • PDF

A Design of Navigation System Using Stratospheric Airships in South Korea

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jae;Hur, Jung;Kang, Tae-Sam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.56-69
    • /
    • 2006
  • For a relatively small country like Korea, a radionavigation system using airships can be considered, which is to provide the navigation service utilizing the stratospheric airships that are deployed in the stratosphere at the altitude of around 20-23km, and which is an independent or a back-up radionavigation system other than current GPS or GLONASS. In this paper, a feasibility study on the constellation of stratospheric airships for the navigation system has been performed. A measure of a geometrical condition between a receiver and navigation transmitters. called the DOP (Dilution of Precision), determines the resulting positioning error of the navigation system, if the error of range measurement is predictable. Therefore, with assumption that the range measurement error of the stratospheric airship navigation system is quite similar to GPS. the several DOP values have been used to evaluate the performance of the navigation system with comparing with the DOP values of GPS as the reference values. To provide the position information of the navigation transmitters to users, a receiver cluster system fixed on the ground, called an IGPS (inverted GPS), is proposed, and the error is also evaluated using the DOP values. Five areas around five major cities in South Korea have been selected, and then by numerical simulations the DOP values are compared those of GPS to assess the performance of the proposed navigation system using stratospheric airships. The possible frequency bands have been proposed. and then link budget of the navigation transmitter has been analyzed for the proposed navigation system.

Control System of Service Robot for Hospital (병원용 서비스 로봇의 제어시스템)

  • 박태호;최경현;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.540-544
    • /
    • 2001
  • This paper addresses a hybrid control architecture for the hospital service robot, SmartHelper. In hybrid architecture, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the hybrid architecture is verified.

  • PDF

Computer-aided Maxillofacial ablation and reconstruction Surgery (임상가를 위한 특집 1 - 컴퓨터 기반 악골 종양의 절제 및 재건술)

  • Moon, Seong-Yong;Lim, Sung-Hoon
    • The Journal of the Korean dental association
    • /
    • v.52 no.10
    • /
    • pp.596-601
    • /
    • 2014
  • Computer-aided surgery is popular and useful in the field of oral and maxillofacial surgery, because of the possibility of simulation with a high accuracy. In all aspects of surgery, proper planning facilitates more predictable operative results, however before the use of virtual planning, much of this relied on 2-dimensional (2-D) imaging for treatment planning on a 3-dimensional (3-D) object and surgical trial and error. With real-time instrument positioning and clear anatomic identification, a computer-assisted navigation system (CANS) is exceptionally helpful in maxillofacial surgery. These techniques enable performing precise bony ablation and reconstruction, and also decrease surgical time and donor site defect.

Study on Development of Hospital Service Robot SmartHelper (병원용 서비스 로봇 SmartHelper 개발에 관한 연구)

  • Choi, Kyung-Hyun;Lee, Seok-Hee;Park, Tae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.325-329
    • /
    • 2001
  • This paper addresses a control architecture for the hospital service robot, SmartHelper. With a sensing-reasoning-acting paradigm, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the control architecture is verified.

  • PDF

Effect of Spoofing on Unmanned Aerial Vehicle using Counterfeited GPS Signal

  • Seo, Seong-Hun;Lee, Byung-Hyun;Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.57-65
    • /
    • 2015
  • Global Navigation Satellite System (GNSS) including Global Positioning System (GPS) is an important element for navigation of both the military and civil Unmanned Aerial Vehicle (UAV). Contrary to the military UAVs, the civil UAVs use the civil signals which are unencrypted, unauthenticated and predictable. Therefore if the civil signals are counterfeited, the civil UAV’s position can be manipulated and the appropriate movement of the civil UAV to the target point is not achieved. In this paper, spoofing on the autonomous navigation UAV is implemented through field experiments. Although the demanded conditions for appropriate spoofing attack exists, satisfying the conditions is restricted in real environments. So, the Way-point of the UAV is assumed to be known for experiments and assessments. Under the circumstances, GPS spoofing signal is generated based on the Software-based GNSS signal generator. The signal is emitted to the target UAV using the antenna of the spoofer and the effect of the signal is analyzed and evaluated. In conclusion, taking the UAV to the target point is hardly feasible. To implement the spoofing as expectation, the position and guidance system of the UAV has to be known. Additionally, the GPS receiver on the UAV could be checked whether it appropriately tracks the spoofing signal or not. However, the effect of the spoofing signal on the autonomous UAV has been verified and assessed through the experimental results. Spoofing signal affects the navigation system of the UAV so that the UAV goes off course or shows an abnormal operation.

Improvement of Flood Disaster Mitigation on Long-term Development Plan (장기개발계획상의 방재제도 개선)

  • 고영찬;오남선
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.107-119
    • /
    • 2001
  • Disaster mitigation, especially as a concept similar to damage mitigation caused by heavy rainfalls and flood is closely related to long-term development plan. This plan of an harbor area where is located in lower region is established and carried under consideration of disaster mitigation concept such as internal drainage and so on. Flood damage is somewhat predictable in accordance with height, stream and rainfall characteristics of the region. Therefore it is necessary to establish national and urban plan under consideration of this fact. But this consideration of existing regulation and institution is insufficient and improvement of regulation and institution is needed. This consideration of disaster mitigation fields is regulated declaratively and inclusively in national plan which is established in broad region, and specifically and detailedly in urban plan which is established in narrow region. The program to improve regulation and institution is proposed in order to consider disaster mitigation fields as a level of this plan.

  • PDF

A Study on Angle of Heel in Turning using Ship Maneuverability lndices (선박 조종성 지수를 이용한 선회 중 횡경사에 관한 기초연구)

  • Kim, Hong-Beom;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.269-269
    • /
    • 2019
  • The ships are turning for the purpose of collision avoidence and change of course. It is possible that ships have capsizing accident when improper loading of cargo and excessive use rudder angle in turning. It is difficult for navigation officers to recognize the danger of heeling during a turn, because the dynamic state of the ship changes in real time. Thus, in this study, ship's heeling angle was predicted during turning using the maneuverability indices estimated from the ship's autopilot. The maneuverability indices estimated through the Kalman filter of Autopilot is real-time predictable. The turning radius was obtained from the estimated Index of turining ability and calculations of the heeling angle were possible in turning. It is intended to be used as a basic data on the prevention of danger heeling angle during turning.

  • PDF

Accuracy of simulation surgery of Le Fort I osteotomy using optoelectronic tracking navigation system (광학추적항법장치를 이용한 르포씨 제1형 골절단 가상 수술의 정확성에 대한 연구)

  • Bu, Yeon-Ji;Kim, Soung-Min;Kim, Ji-Youn;Park, Jung-Min;Myoung, Hoon;Lee, Jong-Ho;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.2
    • /
    • pp.114-121
    • /
    • 2011
  • Introduction: The aim of this study was to demonstrate that the simulation surgery on rapid prototype (RP) model, which is based on the 3-dimensional computed tomography (3D CT) data taken before surgery, has the same accuracy as traditional orthograthic surgery with an intermediate splint, using an optoelectronic tracking navigation system. Materials and Methods: Simulation surgery with the same treatment plan as the Le Fort I osteotomy on the patient was done on a RP model based on the 3D CT data of 12 patients who had undergone a Le Fort I osteotomy in the department of oral and maxillofacial surgery, Seoul National University Dental Hospital. The 12 distances between 4 points on the skull, such as both infraorbital foramen and both supraorbital foramen, and 3 points on maxilla, such as the contact point of both maxillary central incisors and mesiobuccal cuspal tip of both maxillary first molars, were tracked using an optoelectronic tracking navigation system. The distances before surgery were compared to evaluate the accuracy of the RP model and the distance changes of 3D CT image after surgery were compared with those of the RP model after simulation surgery. Results: A paired t-test revealed a significant difference between the distances in the 3D CT image and RP model before surgery.(P<0.0001) On the other hand, Pearson's correlation coefficient, 0.995, revealed a significant positive correlation between the distances.(P<0.0001) There was a significant difference between the change in the distance of the 3D CT image and RP model in before and after surgery.(P<0.05) The Pearson's correlation coefficient was 0.13844, indicating positive correlation.(P<0.1) Conclusion: Theses results suggest that the simulation surgery of a Le Fort I osteotomy using an optoelectronic tracking navigation system I s relatively accurate in comparing the pre-, and post-operative 3D CT data. Furthermore, the application of an optoelectronic tracking navigation system may be a predictable and efficient method in Le Fort I orthognathic surgery.

A Study on Predictive Traffic Information Using Cloud Route Search (클라우드 경로탐색을 이용한 미래 교통정보 예측 방법)

  • Jun Hyun, Kim;Kee Wook, Kwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.287-296
    • /
    • 2015
  • Recent navigation systems provide quick guide services, based on processing real-time traffic information and past traffic information by applying predictable pattern for traffic information. However, the current pattern for traffic information predicts traffic information by processing past information that it presents an inaccuracy problem in particular circumstances(accidents and weather). So, this study presented a more precise predictive traffic information system than historical traffic data first by analyzing route search data which the drivers ask in real time for the quickest way then by grasping traffic congestion levels of the route in which future drivers are supposed to locate. First results of this study, the congested route from Yang Jae to Mapo, the analysis result shows that the accuracy of the weighted value of speed of existing commonly congested road registered an error rate of 3km/h to 18km/h, however, after applying the real predictive traffic information of this study the error rate registered only 1km/h to 5km/h. Second, in terms of quality of route as compared to the existing route which allowed for an earlier arrival to the destination up to a maximum of 9 minutes and an average of up to 3 minutes that the reliability of predictable results has been secured. Third, new method allows for the prediction of congested levels and deduces results of route searches that avoid possibly congested routes and to reflect accurate real-time data in comparison with existing route searches. Therefore, this study enabled not only the predictable gathering of information regarding traffic density through route searches, but it also made real-time quick route searches based on this mechanism that convinced that this new method will contribute to diffusing future traffic flow.