• Title/Summary/Keyword: precursor particle size

Search Result 215, Processing Time 0.036 seconds

Fabrication of fine BSCCO-2223 precursor powder by spray pyrolysis process (분무 열분해방법에 의한 미세 BSCCO-2223 전구분말의 제조)

  • 김성환;유재무;고재웅;김영국;박기호
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • Many researches on fabrication process for BSCCO precursor powders have been developed for high J$_{c}$ BSCCO-2223 tape. Spray pyrolysis method for fabrication of precursor powder has many advantages, such as high purity, fine particle size and low carbon content of BSCCO precursor powder. Fine, spherical powders were prepared by ultrasonic spray pyrolysis from the aqueous solution of metal nitrates. BSCCO precursor powders were synthesized with various solutes concentration and heat treatment conditions. Average particle size for spray pyrolysis powders was $1.5∼3\mu\textrm{m}$. Bi-2223/Ag tape was prepared by PIT method and followed by various sintering conditions. BSCCO precursor powders were characterized by XRD, SEM, EDS, Carbon content and particle size analysis.s.

  • PDF

Characterizations of fine Bi-2223 precursor powder by spray pyrolysis process (분무 열분해법으로 제조된 미세 Bi-2223 전구분말의 특성)

  • Kim S. H.;Yoo J. M.;Ko J. W.;Kim Y. K.
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.124-128
    • /
    • 2005
  • Homogeneous and fine powders for Bi-2223 tape were prepared by ultrasonic spray pyrolysis (SP) method from an aqueous solution of metal nitrates. Bi-2223 precursor powders were synthesized with various solutes concentration and pyrolysis temperature. The synthesized precursor powders had a narrow particle size distribution and an average particle size was $\~{\cal}um$. The reactivity of precursor powder by SP method is very high, attributed to the fine and narrow particle size distribution. Bi-2223/Ag tape was prepared using PIT method and followed by various sintering conditions. The precursor powder by SP method promoted a very quick formation of the Bi-2223 phase for short sintering time while the secondary phase such as large AEC phase and $Ca_2PbO_4$ were minimized for SP tapes.

  • PDF

Evaluation of Mg size dependence on superconductivity of MgB2

  • Sinha, B.B.;Jang, S.H.;Chung, K.C.;Kim, J.H.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.39-43
    • /
    • 2013
  • $MgB_2$ bulk samples are synthesized through solid state reaction route using Mg precursors with different particle size by keeping the boron precursor unchanged. Scanning electron microscopy study of the fractured surface for all the samples depicts quite distinct structure depending on the Mg precursor. Big size of Mg precursor resulted in to largely elongated and deep pores while smaller one gave roughly ellipsoidal and shallow pore structure. Influence of the Mg particle size on the grain to grain connectivity reflected in the critical current density value which was greater for samples with smaller Mg precursor. All the synthesized samples undergo a superconducting transition at around 36.5 K irrespective of different Mg precursor particle size.

Coercivity of Nd-Fe-B-type Fine Particles Prepared from Different Precursor Materials

  • Kim, K.M.;Kwon, H.W.;Lee, J.G.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • Fine Nd-Fe-B-type particles were prepared by ball milling of different types of Nd-Fe-B precursor materials, such as die-upset magnet, HDDR-treated material, and sintered magnets. Coercivity dependence on the grain and particle size of the powder was investigated. Coercivity of the milled particles was reduced as the particle size decreased, and the extent of coercivity loss was dependent upon the precursor material. Coercivity loss in the finely milled particles was attributed to the surface oxidation. The extent of coercivity loss in the fine particles was closely linked to grain size of the precursor materials. Coercivity loss was more profound for the fine particles with larger grain size. Contrary to the fine particles from the sintered magnets with larger grain size the fine particles (~10 um) from the die-upset magnet and HDDR-treated material with much finer grain size still retained high coercivity (> 10 kOe for die-upset magnet, > 4 kOe for HDDR-treated material).

Photocatalytic Properties of TiO2 Nanopowder Synthesized by Chemical Vapor Condensation Process (화학기상응축 공정으로 제조한 TiO2 나노분말의 광촉매 특성)

  • 임성순;남희영;윤성희;이창우;유지훈;이재성
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.123-128
    • /
    • 2003
  • $TiO_2$ nanopowder was synthesized by chemical vapor condensation (CVC) process and its photocatalytic property depending on microstructure was considered in terns of decomposition rate of organic compound. In order to control microstructure of $TiO_2$ nanopowder such as particle size and degree of agglomeration, precursor flow rate representing number concentration was changed as a process variable. In TEM observation, spherical $TiO_2$ nanoparticles with average size of 20 nm showed gradual increases in particle size and degree of agglomeration with increase of precursor flow rate. Also decomposition rate of organic compound increased with decreasing precursor flow rate. Thus, it was concluded that photocatalytic property was enhanced by targe surface area of disperse $TiO_2$ nanoparticles synthesized at lower precursor flow rate condition in CVC process.

Synethisis of fine BSCCO precursor powder by spray pyrolysis (분무 열분해에 의한 미세 BSCCO 전구체 분말의 합성)

  • 김성환;유재무;고재웅;김영국;박성창
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.99-102
    • /
    • 2003
  • Many researches on synthesis process for BSCCO precursor powders have been developed for high J$_{c}$ BSCCO-2223/Ag tape. Spray pyrolysis method for fabrication of precursor powder has many advantages, such as high purity, fine particle size of BSCCO precursor powder. Fine, spherical powders were prepared by ultrasonic spray pyrolysis from the aqueous solution of metal nitrates. BSCCO precursor powders were synthesized with 0.1 M concentration and heat treatment conditions. Average particle size for spray pyrolysis powders was 1.5 ~ 3 ${\mu}{\textrm}{m}$. BSCCO -2223/Ag tape was prepared by PIT method and followed by various sintering conditions. The critical current density of BSCCO-2223/Ag tape sintered in low oxygen partial pressure was ~ 23 kAcm$^{-2}$.

  • PDF

Effect of Precursor Alumina Particle Size on Pore Structure and Gas Permeation Properties of Tubular α-alumina Support Prepared by Slip Casting Process (초기 알루미나 분체의 입자크기가 주입성형법에 의해 제조된 튜브형 α-알루미나 지지체의 기공구조 및 기체 투과 특성에 미치는 영향)

  • Yang, Eun-Mok;Lee, Hye Ryeon;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.372-380
    • /
    • 2016
  • The present paper reports the effect of precursor alumina particle size on pore structure and single gas permeation properties of tubular ${\alpha}$-alumina supports, prepared by a combined process of slip casting and sintering. Pore diameter of as-prepared ${\alpha}$-alumina support was highly dependent on precursor ${\alpha}$-alumina particle size. Although, increase in the precursor particle size increases the pore diameter, but the porosity of ${\alpha}$-alumina support mainly control by sintering temperature. Sintering studies reveal that as sintering temperature increased porosity of support decreased. Single gas permeance results indicate that permence is proportional to the square of pore diameter and linearly to porosity. These dependencies revealed that gas permeation trough as-prepared ${\alpha}$-alumina support was governed by viscous flow mechanism. The present announces that precursor ${\alpha}$-alumina particle size and sintering temperature are key parameters to control gas permeantion properties of ${\alpha}$-alumina supports.

Influence of pH on Sensitivity of $WO_3$ NO gas sensor fabricated by Sol-Coprecipitation method (Sol-Coprecipitation 법에 의한 NO 감지용 $WO_3$ 센서 제조시 pH의 영향)

  • Kim, Suk-Bong;Lee, Dae-Sik;Lee, Duk-Dong;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.118-124
    • /
    • 2001
  • When particles are dissolved in solution, they have different zeta-potentials depending on pH. Zeta-potential has an influence on particle separation, which can control particle size. And the size of $WO_3$ particle affects the sensitivity of $WO_3$ sensor for detecting NO gas. Therefore we study influence of pH on NO-sensing $WO_3$ gas sensor fabricated by Sol-Coprecipitation method. As pH increases from 2 to 7, dynamic mobility of $WO_3$ precursor was increased. When pH was 7, it showed the largest distribution separation. It means when pH is 7, we can make $WO_3$ powder which has smaller particle size. And it is confirmed by particle size analysis of $WO_3$ powder, X-ray diffration result of $WO_3$ sensing layer and surface morphology. It also affect NO sensing characteristics of $WO_3$ gas sensor. The sensing film synthesized at pH 7 showed the largest sensitivity.

  • PDF

Particle Size Effect: Ru-Modified Pt Nanoparticles Toward Methanol Oxidation

  • Kim, Se-Chul;Zhang, Ting;Park, Jin-Nam;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3331-3337
    • /
    • 2012
  • Ru-modified Pt nanoparticles of various sizes on platelet carbon nanofiber toward methanol oxidation were investigated in terms of particle size effect. The sizes of Pt nanoparticles, prepared by polyol method, were in the range of 1.5-7.5 nm and Ru was spontaneously deposited by contacting Pt nanoparticles with the Ru precursor solutions of 2 and 5 mM. The Ru-modified Pt nanoparticles were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. The methanol oxidation activities of Ru-modified Pt nanoparticles, measured using cyclic voltammetry and chronoamperometry, revealed that when the Pt particle size was less than 4.3 nm, the mass specific activity was fairly constant with an enhancement factor of more than 2 at 0.4 V. However, the surface area specific activity was maximized on Pt nanoparticles of 4.3 nm modified with 5 mM Ru precursor solution. The observations were discussed in terms of the enhancement of poison oxidation by Ru and the population variation of Pt atoms at vertices and edges of Pt nanoparticles due to selective deposition of Ru on the facets of (111) and (100).