• Title/Summary/Keyword: precise point positioning

Search Result 124, Processing Time 0.022 seconds

Development of a Combined GPS/GLONASS PPP Method

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Precise Point Positioning (PPP) is a stand-alone precise positioning approach. As the quality of satellite orbit and clock products from analysis centers has been improved, PPP can provide more precise positioning accuracy and reliability. A combined use of Global Positioning System (GPS) and Global Orbiting Navigation Satellite System (GLONASS) in PPP is now available. In this paper, we explained about an approach for combined GPS and GLONASS PPP measurement processing, and validated the performance through the comparison with GPS-only PPP results. We also used the measurement obtained from the GRAS reference station for the performance validation. As a result, we found that the combined GPS/GLONASS PPP can yield a more precise positioning than the GPS-only PPP.

Near-Real-Time Ship Tracking using GPS Precise Point Positioning (GPS 정밀단독측위 기법을 이용한 준실시간 선박 위치추적)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.783-790
    • /
    • 2010
  • For safety navigation of ships at sea, ships monitor their location obtained from Global Positioning Satellite System (GNSS). In this study, we computed near-real-time positions of a ship at sea using GPS Precise Point Positioning (PPP) technique and analyzed precision of the near-real-time positions. We conducted ship borne GPS observations in the south sea of Korea. To process the GPS data using PPP technique, GIPSY-OASIS (GPS Inferred Positioning System-Orbit Analysis and Simulation Software) developed by the Jet Propulsion Laboratory was used. Antenna phase center variations, ocean tidal loading displacements, and azimuthal gradients of the atmosphere were corrected or estimated as standard procedures of high-precision GIPSY-OASIS data processing. As a result, the precisions of near-real-time positions was ~1cm.

Development of Reference Epoch Adjustment Model for Correction of GPS Precise Point Positioning Results (GPS 정밀단독측위 성과의 보정을 위한 기준시점 조정모델 개발)

  • Sung, Woo-Jin;Yun, Hong-Sik;Hwang, Jin-Sang;Cho, Jae-Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.249-258
    • /
    • 2012
  • In this study, the epoch adjustment model was developed to correct GPS precise point positioning result to be suitable for the current geodetic datum of Korea which is tied at past epoch statically. The model is based on the formula describing crustal movements, and the formula is composed of several parameters. To determine the parameters, the data gathered at 14 permanent GPS stations for 10 years, from 2000 to 2011, were processed using GIPSY-OASIS II. It was possible to determine the position of permanent GPS stations with an error range of 16mm and the position of check points with an error range of 12mm by appling the model to GPS precise point positioning result. It is considered that more precise model could be calculated by using GPS data of more permanent GPS stations.

Architecture Design for Maritime Centimeter-Level GNSS Augmentation Service and Initial Experimental Results on Testbed Network

  • Kim, Gimin;Jeon, TaeHyeong;Song, Jaeyoung;Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • In this paper, we overview the system development status of the national maritime precise point positioning-real-time kinematic (PPP-RTK) service in Korea, also known as the Precise POsitioning and INTegrity monitoring (POINT) system. The development of the POINT service began in 2020, and the open service is scheduled to start in 2025. The architecture of the POINT system is composed of three provider-side facilities-a reference station, monitoring station, and central control station-and one user-side receiver platform. Here, we propose the detailed functionality of each component considering unidirectional broadcasting of augmentation data. To meet the centimeter-level user positioning accuracy in maritime coverage, new reference stations were installed. Each reference station operates with a dual receiver and dual antenna to reduce the risk of malfunctioning, which can deteriorate the availability of the POINT service. The initial experimental results of a testbed from corrections generated from the testbed network, including newly installed reference stations, are presented. The results show that the horizontal and vertical accuracies satisfy 2.63 cm and 5.77 cm, respectively. For the purpose of (near) real-time broadcasting of POINT correction data, we designed a correction message format including satellite orbit, satellite clock, satellite signal bias, ionospheric delay, tropospheric delay, and coordinate transformation parameters. The (near) real-time experimental setup utilizing (near) real-time processing of testbed network data and the designed message format are proposed for future testing and verification of the system.

Analysis about Seismic Displacements Based on GPS for Management of Natural Disaster (자연재난 관리를 위한 GPS 기반의 지진재해 분석)

  • Park, Joon-Kyu;Yun, Hee-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.311-318
    • /
    • 2011
  • On March 11, 2011, an 9.0-magnitude earthquake occurred near the northeastem coast Japanese. It was the largest earthquake that hit Japan since the beginning of modern seismometry. The earthquake occurred 179km east of the Sendai, Miyagi Prefecture, leaving about 27,000 of people confirmed dead, injured or missing due to the earthquake and tsunami. In this study, crustal Deformation in Mizusawa, Tsukuba and Usuda station were calculated based on GPS data in IGS station of Japan. The observation data were processed by precise point positioning and relative-positioning method using on-line GPS data processing services and a high precision scientific GPS/GLONASS data processing software. The coseismic displacements in IGS stations before and after the earthquake were analyzed using kinematic precise point positioning method, and the crustal deformation of the areas before and after the earthquake were precisely calculated using the relative-positioning method. The results of the study calculated precise coordination that the RMSE is maximum ${\pm}0.003m$, respectively and showed that Mizusawa station moved 2.6m southeast by the earthquake.

A precise positioning by a fuzzy-neural controller (퍼지 신경망을 이용한 정밀위치 제어)

  • Pak, Seung-Chul;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.89-91
    • /
    • 1997
  • Conventional linear control schemes often fail to provide precise positioning of a control object under the influence of friction, deadzone, saturation, etc. This paper proposes a control scheme for a precise point-to-point positioning system, which behaves well even under the above influences. The proposed scheme is composed of a fuzzy-neural controller. The neural network is employed to improve the performance of the fuzzy logic. To illustrate the effectiveness of this scheme, experiments are carried out for the cases of a fuzzy controller, the proposed fuzzy-neural controller, and the results are compared with each other.

  • PDF

Positional Accuracy Analysis of Permanent GPS Sites Using Precise Point Positioning (정밀절대측위를 이용한 상시관측소 위치정확도 분석)

  • Kang, Joon-Mook;Lee, Yong-Wook;Kim, Min-Gyu;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.529-536
    • /
    • 2008
  • Researches about 3-D Positioning system using GPS were carried out many-sided by national organs, laboratories, the worlds of science. And most of researches were development of relative positioning algorithm and its applications. Relative positioning has a merit, which can eliminate error in received signals. But its error increase due to distance of baseline. GPS absolute positioning is a method that decides the position independently by the signals from the GPS satellites which are received by a receiver at a certain position. And it is necessary to correct various kinds of error(clock error, effect of ionosphere and troposphere, multi-path etc.). In this study, results of PPP(Precise Point Positioning) used Bernese GPS software was compared with notified coordinates by the NGII(National Geographic Information Institute) in order to analyze the positional accuracy of permanent GPS sites. And the results were compared with results of AUSPOS - Online GPS Processing Service for comparison with relative positioning.

A Short-Term Prediction Method of the IGS RTS Clock Correction by using LSTM Network

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.209-214
    • /
    • 2019
  • Precise point positioning (PPP) requires precise orbit and clock products. International GNSS service (IGS) real-time service (RTS) data can be used in real-time for PPP, but it may not be possible to receive these corrections for a short time due to internet or hardware failure. In addition, the time required for IGS to combine RTS data from each analysis center results in a delay of about 30 seconds for the RTS data. Short-term orbit prediction can be possible because it includes the rate of correction, but the clock correction only provides bias. Thus, a short-term prediction model is needed to preidict RTS clock corrections. In this paper, we used a long short-term memory (LSTM) network to predict RTS clock correction for three minutes. The prediction accuracy of the LSTM was compared with that of the polynomial model. After applying the predicted clock corrections to the broadcast ephemeris, we performed PPP and analyzed the positioning accuracy. The LSTM network predicted the clock correction within 2 cm error, and the PPP accuracy is almost the same as received RTS data.

Accuracy Analysis of Code-based PPP-RTK Positioning Utilizing K-SSR Correction Messages Outside the Reference Network

  • Yoon, Woong-Jun;Park, Kwan-Dong;Kim, Hye-In;Woo., Seung;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 2017
  • Precise Point Positioning-Real Time Kinematic (PPP-RTK) refers to a technology that combines PPP with network-RTK in which a user does not directly receive observed data from a reference station but receives State-Space Representation (SSR) messages corrected for error components from a central processing station through Networked Transport of RTCM via Internet Protocol (NTRIP) or Digital Multimedia Broadcasting (DMB) for purposes of positioning. SSR messages, which refer to corrections used in PPP-RTK, are generated by a central processing station using real-time observed data collected from reference stations and account for corrections needed due to the ionosphere, troposphere, satellite orbital errors, satellite time offsets, and satellite biases. This study used a type of SSR message provided in South Korea, known as Korea-SSR (K-SSR), to implement a PPP-RTK algorithm based on code-pseudorange measurements and validated its accuracy within the reference station network. In order to validate the accuracy of the implemented algorithm outside of the network, the K-SSR was extrapolated and applied to positioning in reference stations in Changchun, China (CHAN) and Japan (AIRA). This also entailed a quantitative evaluation that measured improvements in accuracy in comparison with point positioning. The results of the study showed that positioning applied with extrapolated K-SSR correction data was more accurate in both AIRA and CHAN than point positioning with improvements of approximately 20~50%.

An Open-Loop Method for Point-to-Point Positioning of a Piezoelectric Actuator

  • Henmi, Nobuhiko;Tanaka, Michihiko
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.9-13
    • /
    • 2007
  • We describe how to control a piezoelectric actuator using the open-loop method for point-to-point positioning. Since piezoelectric actuators have nonlinear characteristics due to hysteresis and creep between the input voltage and the resulting displacement, a special method is required to eliminate this nonlinearity for an open-loop drive. We have introduced open-loop driving methods for piezoelectric actuators in the past, which required a large input voltage and an initializing motion sequence to reset the state of the actuator before each movement. In this paper, we propose a new driving method that uses the initializing state. This method also utilizes the overshoot from both the upward and downward stepwise drives. Applying this method., we obtained precise point-to-point positioning without the influence of hysteresis and creep.