• Title/Summary/Keyword: precise monitoring

Search Result 383, Processing Time 0.027 seconds

Precise Position Monitoring System for Infant Interaction Analysis (영유아 상호작용 분석을 위한 정밀위치 모니터링 시스템)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.21-26
    • /
    • 2019
  • This paper constructs a real-time monitoring system that can identify the individual positions of infants and their proximity to other infants using an Internet of Things (IoT)-based nameplate. The system consists of a precision location tracking module, a data transmission system for calculating gateway location information, a service platform server, and a data analysis processing module considering the development of infants and young children. The purpose of this study is to extract information about how infants interact with each other. The information gathered through this system can be used as important information to improve the peer relations of all infants and toddlers, from neglected infants to infants with no social development problems, to more popular infants. It is possible, based on the proximity information between infants and toddlers, that the teacher can identify positive interactions or negative interactions, and can educate infants on how to improve their peer relationships. These results can be used for consultation with parents, and the information collected through this system can be used as a database to establish a system for improving the relationships between infants and toddlers.

Time Synchronization Technique for GNSS Jamming Monitoring Network System (GNSS 재밍 신호 모니터링 네트워크 시스템을 위한 독립된 GNSS 수신기 간 시각 동기화 기법)

  • Jin, Gwon gyu;Song, Young jin;Won, Jong hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.74-85
    • /
    • 2021
  • Global Navigation Satellite System (GNSS) receivers are intrinsically vulnerable to radio frequency jamming signals due to the fundamental property of radio navigation systems. A GNSS jamming monitoring system that is capable of jamming detection, classification and localization is essential for infrastructure for autonomous driving systems. For these 3 functionalities, a GNSS jamming monitoring network consisting of a multiple of low-cost GNSS receivers distributed in a certain area is needed, and the precise time synchronizaion between multiple independent GNSS receivers in the network is an essential element. This paper presents a precise time synchronization method based on the direct use of Time Difference of Arrival (TDOA) technique in signal domain. A block interpolation method is additionally incorporated into the method in order to maintain the precision of time synchronization even with the relatively low sampling rate of the received signals for computational efficiency. The feasibility of the proposed approach is verified in the numerical simualtions.

Development of Precise Point Positioning Method Using Global Positioning System Measurements

  • Choi, Byung-Kyu;Back, Jeong-Ho;Cho, Sung-Ki;Park, Jong-Uk;Park, Pil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.217-223
    • /
    • 2011
  • Precise point positioning (PPP) is increasingly used in several parts such as monitoring of crustal movement and maintaining an international terrestrial reference frame using global positioning system (GPS) measurements. An accuracy of PPP data processing has been increased due to the use of the more precise satellite orbit/clock products. In this study we developed PPP algorithm that utilizes data collected by a GPS receiver. The measurement error modelling including the tropospheric error and the tidal model in data processing was considered to improve the positioning accuracy. The extended Kalman filter has been also employed to estimate the state parameters such as positioning information and float ambiguities. For the verification, we compared our results to other of International GNSS Service analysis center. As a result, the mean errors of the estimated position on the East-West, North-South and Up-Down direction for the five days were 0.9 cm, 0.32 cm, and 1.14 cm in 95% confidence level.

Development of the Kinematic Global Positioning System Precise Point Positioning Method Using 3-Pass Filter

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Cho, Sung-Ki;Park, Jong-Uk;Park, Pil-Ho;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.269-274
    • /
    • 2012
  • Kinematic global positioning system precise point positioning (GPS PPP) technology is widely used to the several area such as monitoring of crustal movement and precise orbit determination (POD) using the dual-frequency GPS observations. In this study we developed a kinematic PPP technology and applied 3-pass (forward/backward/forward) filter for the stabilization of the initial state of the parameters to be estimated. For verification of results, we obtained GPS data sets from six international GPS reference stations (ALGO, AMC2, BJFS, GRAZ, IENG and TSKB) and processed in daily basis by using the developed software. As a result, the mean position errors by kinematic PPP showed 0.51 cm in the east-west direction, 0.31 cm in the north-south direction and 1.02 cm in the up-down direction. The root mean square values produced from them were 1.59 cm for the east-west component, 1.26 cm for the south-west component and 2.95 cm for the up-down component.

Pressure Monitoring System in Gastro-Intestinal Track (소화기관내의 압력 모니터링 시스템)

  • 김용인;박석호;김병규;박종오
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1089-1094
    • /
    • 2004
  • Diseases in the gastro-intestinal track are on an increasing trend. In order to diagnose a patient, the various signals of the digestive organ, such as temperature, pH, and pressure, can offer the helpful information. Among the above mentioned signals, we choose the pressure variation as a monitoring signal. The variation of a pressure signal of the gastro-intestinal track can offer the information of a digestive trouble or some clues of the diseases. In this paper, a pressure monitoring system for the digestive organs of a living pig is presented. This system concept is to transmit the measured biomedical signals from a transmitter in a living pig to wireless receiver that is positioned out of body. The integrated solution includes the following parts: (1) the swallow type pressure capsule, (2) the receiving set consisting of a receiver, decoder box, and PC. The merit of the proposed system if that the monitoring system can supply the precise and repeatable pressure in the gastro-intestinal track. In addition, the design of low power consumption enables it to keep sending reliable signals while the pressure capsule is working in the digestive organ. The subject of the study for the pressure monitoring system is in-vivo experiments for a living pig. We achieved the pressure tracings in digestive organs and verified the validity of system after several in-vivo tests using pressure monitoring system. As a result, we found each organ has its own characterized pressure fluctuation.

Architecture Design for Maritime Centimeter-Level GNSS Augmentation Service and Initial Experimental Results on Testbed Network

  • Kim, Gimin;Jeon, TaeHyeong;Song, Jaeyoung;Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • In this paper, we overview the system development status of the national maritime precise point positioning-real-time kinematic (PPP-RTK) service in Korea, also known as the Precise POsitioning and INTegrity monitoring (POINT) system. The development of the POINT service began in 2020, and the open service is scheduled to start in 2025. The architecture of the POINT system is composed of three provider-side facilities-a reference station, monitoring station, and central control station-and one user-side receiver platform. Here, we propose the detailed functionality of each component considering unidirectional broadcasting of augmentation data. To meet the centimeter-level user positioning accuracy in maritime coverage, new reference stations were installed. Each reference station operates with a dual receiver and dual antenna to reduce the risk of malfunctioning, which can deteriorate the availability of the POINT service. The initial experimental results of a testbed from corrections generated from the testbed network, including newly installed reference stations, are presented. The results show that the horizontal and vertical accuracies satisfy 2.63 cm and 5.77 cm, respectively. For the purpose of (near) real-time broadcasting of POINT correction data, we designed a correction message format including satellite orbit, satellite clock, satellite signal bias, ionospheric delay, tropospheric delay, and coordinate transformation parameters. The (near) real-time experimental setup utilizing (near) real-time processing of testbed network data and the designed message format are proposed for future testing and verification of the system.

Pressure Monitoring System in Gastro-Intestinal Tract

  • Kim, Byung-Kyu;Kim, Yong-In;Park, Suk-Ho;Jo, Jin-Ho;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.196-201
    • /
    • 2005
  • Diseases in the gastro-intestinal tract are on an increasing trend. In order to diagnose a patient, various signals of the digestive organ, such as temperature, pH, and pressure, can offer the helpful information. Among the above mentioned signals, we choose the pressure variation as a monitoring signal. The variation of a pressure signal of the gastro-intestinal tract can offer the information of a digestive trouble or some clues of the diseases. In this paper, a pressure monitoring system for the digestive organs of a living pig is presented. This is why a pig's gastro-intestinal tract is very similar as human's. This system concept is to transmit the measured biomedical signals from a transmitter in a living pig to a wireless receiver that is positioned out of body. The integrated solution includes the swallow type pressure capsule and the receiving set consisting of a receiver, decoder circuit. The merit of the proposed system is that the monitoring system can supply the precise and a durable characteristic to measure and to transmit a signal in the gastro-intestinal tract. We achieved the pressure tracings in digestive organs and verified the validity of system after several in-vivo tests using the pressure monitoring system. Through various experiments, we found each organ has its own characterized pressure fluctuation.

  • PDF

Development of Health Monitoring System Using Self Magnetization Magnetostrictive Sensor (자기자화자왜센서를 이용한 설비 off-line Health Monitoring 시스템 개발)

  • Kim, Yi-Gon;Moon, Hong-Sik;Kim, Jun;Kim, Ji-Hyeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.481-486
    • /
    • 2012
  • This thesis examines the development and application of 'Health Monitoring System' which monitors periodically the state of a pipe of petrochemical plant by using magnetostrictive sensor technology. The existing guided-wave inspection methods cannot be applied to welding part inspection in pipe, and has a limit of precision when applied to general parts because of noise, reflected waves, and so on. This technology uses the information on displacement of a defect through periodic monitoring, which makes more precise inspection, and can be utilized very usefully in a petrochemical plant.

Development of a Signal Conditioner to Improve the Measurement Reliability of a Microseismic Monitoring System (미소진동 모니터링 시스템의 측정 신뢰도 향상을 위한 시그널 컨디셔너 개발)

  • Cheon, Dae-Sung;Han, Cheol-Min;Lee, Jang Baek
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Microseismic monitoring is utilized for the performance verification and safety management of the structure by detecting fine levels of damage. In order to construct a highly reliable microseismic monitoring system, the role of signal conditioner is critical. The signal conditioner helps with accurate data collection and precision control of the device, and performs additional functions such as signal conversion, linearization, and amplification. In this technical report, noise reduction signal conditioner suitable for mining sites was developed and reviewed for the purpose of implementing more precise monitoring by supplementing the previously developed microseismic monitoring system.

An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

  • Hababeh, Ismail;Thabain, Anton;Alouneh, Sahel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.86-109
    • /
    • 2019
  • Cloud computing systems' performance is still a central focus of research for determining optimal resource utilization. Running several existing benchmarks simultaneously serves to acquire performance information from specific cloud system resources. However, the complexity of monitoring the existing performance of computing systems is a challenge requiring an efficient and interactive user directing performance-monitoring system. In this paper, we propose an effective multivariate control framework for monitoring cloud systems performance. The proposed framework utilizes the hardware cloud systems performance metrics, collects and displays the performance measurements in terms of meaningful graphics, stores the graphical information in a database, and provides the data on-demand without requiring a third party software. We present performance metrics in terms of CPU usage, RAM availability, number of cloud active machines, and number of running processes on the selected machines that can be monitored at a high control level by either using a cloud service customer or a cloud service provider. The experimental results show that the proposed framework is reliable, scalable, precise, and thus outperforming its counterparts in the field of monitoring cloud performance.