• Title/Summary/Keyword: precise monitoring

Search Result 383, Processing Time 0.022 seconds

Analysis of the Trophic Characteristics of the SoOak River Watershed Using the Korean Trophic State Index (한국형 부영양화지수를 이용한 소옥천 유역의 부영양 특성 분석)

  • Park, Jaebeom;Kal, Byungseok;Lee, Chulgu;Hong, Seonhaw;Choi, Moojin;Seo, Heeseung
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.330-337
    • /
    • 2018
  • The Korean Eutrophication Index($TSI_{ko}$) was estimated using water quality monitoring data of eight main sites in the SoOoak River watershed. The environmental characteristics of rivers were classified and evaluated using the $TSI_{ko}$ for each factor calculated by COD, T-P, and Chl-a. There is a good condition for the algae to grow due to shallow water depth, inflow of non-point source pollution during rainfall, influx of sewage treatment effluent and increase of residence time. It shows trophic state more than mesotrophication year round. Especially, in case of Chuso point, which is the inflow point of Daecheong Lake, the water quality deteriorated due to hydraulic characteristics and showed the eutrophic state. Therefore, it is necessary to establish the measures to improve the water quality through the precise monitoring of SoOak River.

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.

Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor

  • Lee, Sang-Yeop;Chen, Ling-Xin;Choo, Jae-Bum;Lee, Eun-Kyu;Lee, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.130-142
    • /
    • 2006
  • Lab-on-a-chip technology is attracting great interest because the miniaturization of reaction systems offers practical advantages over classical bench-top chemical systems. Rapid mixing of the fluids flowing through a microchannel is very important for various applications of microfluidic systems. In addition, highly sensitive on-chip detection techniques are essential for the in situ monitoring of chemical reactions because the detection volume in a channel is extremely small. Recently, a confocal surface enhanced Raman spectroscopic (SERS) technique, for the highly sensitive biological analysis in a microfluidic sensor, has been developed in our research group. Here, a highly precise quantitative measurement can be obtained if continuous flow and homogeneous mixing condition between analytes and silver nano-colloids are maintained. Recently, we also reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). This method overcomes many of the drawbacks of microarray chips, such as long hybridization times and inconvenient immobilization procedures. In this paper, our recent applications of the confocal Raman/fluorescence microscopic technology to a highly sensitive lab-on-a-chip detection will be reviewed.

Liquid Phase Oxidation of Xylenes: Effects of Water Concentration and Alkali Metals

  • Jhung, Sung-Hwa;Lee, Ki-Hwa;Park, Youn-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • A facile and precise batch oxidation reaction system allows continuous monitoring of the oxidation rate and cumulated oxygen conversion of xylenes, and the side reactions to carbon monoxide and carbon dioxide may also be studied. The oxidation reaction can be analyzed precisely with the rate and amount of oxygen consumed. The reaction reveals that 4-carboxybenzaldehyde is an unstable intermediate of p-xylene oxidation as the reaction proceeds instantaneously from p-toluic acid to TPA (terephthalic acid). The alkali metals accelerate oxidation, even though they retard the reaction initially. The oxidation rate increases with decreasing water concentration. However, in the later part of reaction, the reactivity decreases a bit if the water concentration is very low. This retarding effect of water can be overcome partly by the addition of potassium. The oxidation of o-xylene, compared with the oxidation of p-xylene and m-xylene, proceeds quite fast initially, however, the oxidation rate of xylene isomers in the later stage of reaction is in the order of p-xylene > mxylene > o-xylene.

A Correcting Method of the GPS Location Information using one CCTV in Smart Care Surveillance System (스마트 케어 감시 시스템에서 한 대의 CCTV를 이용한 GPS 위치정보의 보정 방법)

  • Park, Eunsung;Kim, Kiyong
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.143-151
    • /
    • 2016
  • Smart care surveillance system can take the position information of the user and monitor by controlling neighbor CCTVs using GPS receiver built into smart device. But because the position information contains a significant error, in general smart device, it is necessary to be corrected for precise monitoring. In previous smart care system, this error is corrected by using a plurality of CCTV. But it has disadvantage that two or more CCTVs pointed toward the same point at the same time. In this paper, we propose the method to correct error of the GPS location information by using only one CCTV. With experiment result, we find that the accuracy of GPS location information corrected with only one CCTV is as improved as two CCTVs.

OKAYAMA PLANET SEARCH PROGRAM

  • SATO BUN'EI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.315-318
    • /
    • 2005
  • We have carried out a precise Doppler survey of G-type giants aiming to unveil the properties of planetary systems in intermediate-mass stars ($1.5-5M_{\bigodot}$). G-type giants are promising targets for Doppler planet searches around massive stars, because they are slow-rotators and have many sharp absorption lines in their spectra and their surface activities are relatively low in contrast to their younger counterparts on the main-sequence (B-A stars). We are now monitoring radial velocities of about 300 late G-type (including early K-type) giants using HIgh Dispersion Echelle Spectrograph (HIDES) at Okayama Astrophysical Observatory. We have achieved a Doppler precision of about 6-7 m/s over a time span of 3 years using an iodine absorption cell. We found that most of the targets have radial velocity scatters of ${\sigma}{\~} 10-20 m\;s^{-1}$ over 1-3 years, with the most stable reaching levels of 6-8 m $s^{-1}$. Up to now, we have succeeded in discovering the first extrasolar planet around a G-type giant star HD 104985, and also found several candidates showing significant radial velocity variations, suggesting the existence of stellar and substellar companions. Observations have continued to establish their variability.

An Implementation of ARM 920T Processor-based Ultrasonic Spirometer and Improvement of Its Sensitivity (ARM 920T 프로세서 기반의 초음파 폐활량계 구현 및 감도 향상 연구)

  • Lee, Cheul-Won;Kim, Young-Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.268-273
    • /
    • 2005
  • The spirometer is a medical device that measures the instantaneous velocity of the respiratory gas flow capacity. It is used for testing the condition of the lung and patient monitoring. It measures the absolute capacity difference that includes the flow capacity signal. In this paper, by using an ultrasound sensor that reduce+ the error caused by the inertia and pressure it has improved the transmission and receiving signal. This has enabled patients with weak respiratory to use the spirometer. Also, by using the ARM 920T Processor, a precise and prompt detection system was implemented.

Designation of a Road in Urban Area Using Rough Transform

  • Kim, Joon-Cheol;Park, Sung-Mo;Lee, Joon-whoan;Jeong, Soo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.766-771
    • /
    • 2002
  • Automatic change detection based on the vector-to-raster comparison is hard especially in high-resolution image. This paper proposes a method to designate roads in high-resolution image in sequential manner using the information from vector map in which Hough transform is used for reliability. By its linearity, the road of urban areas in a vector map can be easily parameterized. Following some pre-processing to remove undesirable objects, we obtain the edge map of raster image. Then the edge map is transformed to a parameter space to find the selected road from vector map. The comparison is done in the parameter space to find the best matching. The set of parameters of a road from vector map is treated as the constraints to do matching. After designating the road, we may overlay it on the raster image for precise monitoring. The results can be used for detection of changes in road object in a semi-automatic fashion.

  • PDF

Effective Application of Close-Range Photogrammetry with Digital Images in Industrial Precise Measurement (산업정밀측정에서 수치영상을 이용한 근접사진측량의 효율적 응용)

  • 이진덕
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 1996
  • The development of still video CCD cameras has simplified dramatically the digital imaging process. Still video cameras have flexibility that allows digital image acquisition and on-board image storage without being connected to a computer. The objective of this paper is to evaluate the performance of digital close-range photogrammetric system using the still video camera for dimensional inspection and structural monitoring being required in various industries. Some sub-pixel measurement techniques, which is indispensable for digital image measurement, were suggested. The author carried out the self-calibration of a high resolution DCS420 still video camera and then test application of a structure. The self-calibrating bundle adjustments resulted in object space accuracies which exceed 1 :46,000. It is ascertained that this digital close-range photogrammetric system has high accuracy potential and task effectiveness for industrial applications.

  • PDF

Terrestrial LiDAR Measurements and Analysis of Topographical Changes on Malipo Beach (지상 LiDAR를 이용한 만리포 해변 정밀 지형측량 및 지형 변화 분석)

  • Shim, Jae-Seol;Kim, Jin-Ah;Park, Han-San;Kim, Seon-Jeong
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.73-84
    • /
    • 2010
  • A terrestrial LiDAR was used to acquire precise and high-resolution topographical information of Malipo beach, Korea. Terrestrial LiDAR and RTK-DGPS (VRS) were mounted on top of a survey vehicle and used to scan 20 times stop-and-go method with 250 m spacing intervals at ebb tides. In total, 7 measurements were made periodically from 2008 to 2009 and after each beach replenishment event. We carried out GIS-based 3D spatial analysis such as slope and volume calculations in order to assess topographical changes over time. In relation to beach replenishment, comparative analysis of each volume change revealed them to be similar. This result indicates that the terrestrial LiDAR measurements are accurate and can be used to analyze temporal topographical changes. In conclusion, the methodology employed in this study can be used efficiently to exercise coastal management through monitoring and analyzing beach process such as erosion and deposition.