• Title/Summary/Keyword: precise image

Search Result 693, Processing Time 0.029 seconds

Algorithm Development of a Visibility Monitoring Technique Using Digital Image Analysis

  • Pokhrel, Rajib;Lee, Hee-Kwan
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.8-20
    • /
    • 2011
  • Atmospheric visibility is one of the indicators used to evaluate the status of air quality. Based on a conceptual definition of visibility as the maximum distance at which the outline of the selected target can be recognized, an image analysis technique is introduced here and an algorithm is developed for visibility monitoring. Although there are various measurement techniques, ranging from bulk and precise instruments to naked eye observation techniques, each has their own limitations. In this study, a series of image analysis techniques were introduced and examined for in-situ application. An imaging system was built up using a digital camera and was installed on the study sites in Incheon and Seoul separately. Visual range was also monitored by using a dual technology visibility sensor in Incheon and transmissometer in Seoul simultaneously. The Sobel mask filter was applied to detect the edge lines of objects by extracting the high frequency from the digital image. The root mean square (RMS) index of variation among the pixels in the image was substantially correlated with the visual ranges in Incheon and Seoul with correlations of $R^2$=0.88 and $R^2$=0.71, respectively. The regression line equations between the visual range and the RMS index in Incheon and Seoul were VR=$2.36e^{0.46{\times}(RMS)}$ and VR=$3.18e^{0.15{\times}(RMS)}$, respectively. It was also confirmed that the fine particles ($PM_{2.5}$) have more impacts to the impairment of visibility than coarse particles.

Automatic Crack Detection on Pressed Panels Using Camera Image Processing with Local Amplitude Mapping (카메라 이미지 처리를 통한 프레스 패널의 크랙결함 검출)

  • Lee, Chang Won;Jung, Hwee Kwon;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.451-459
    • /
    • 2016
  • Crack detection on panels during manufacturing process is an important step for ensuring the product quality. The accuracy and efficiency of traditional crack detection methods, which are performed by eye inspection, are dependent on human inspectors. Therefore, implementation of an on-line and precise crack detection is required during the panel pressing process. In this paper, a regular CCTV camera system is utilized to obtain images of panel products and an image process based crack detection technique is developed. This technique uses a comparison between the base image and a test image using an amplitude mapping of the local image. Experiments are performed in the laboratory and in the actual manufacturing lines to evaluate the performance of the developed technique. Experimental results indicate that the proposed technique could be used to effectively detect a crack on panels with high speed.

The Propagation and Construction of China's National Image in $21^{st}$ Century (21세기 중국 국가이미지의 형성과 전파)

  • Wang, Weimint;Cui, Yan
    • Journal of Digital Convergence
    • /
    • v.9 no.3
    • /
    • pp.47-58
    • /
    • 2011
  • As China's international status is more and more uplifted, the active shaping and effective propagation of China's national image has been regarded as an important means to demonstrate China's soft power, demolish the so-called "China Threat Theory", and compete for China's share in international discourse power. This article first makes a discussion on the fundamental concepts and related theories of national image, and then explores the precise positioning of China's image as "a responsible power" and the connotation that should be contained in this image. Finally, this article presents a tactic of "complex propagation" for the shaping of China's national image, which includes the propagation by new media and advertisement, the marketing of international sport games and other international events, public diplomacy and public relations tactics.

Performance of Support Vector Machine for Classifying Land Cover in Optical Satellite Images: A Case Study in Delaware River Port Area

  • Ramayanti, Suci;Kim, Bong Chan;Park, Sungjae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1911-1923
    • /
    • 2022
  • The availability of high-resolution satellite images provides precise information without direct observation of the research target. Korea Multi-Purpose Satellite (KOMPSAT), also known as the Arirang satellite, has been developed and utilized for earth observation. The machine learning model was continuously proven as a good classifier in classifying remotely sensed images. This study aimed to compare the performance of the support vector machine (SVM) model in classifying the land cover of the Delaware River port area on high and medium-resolution images. Three optical images, which are KOMPSAT-2, KOMPSAT-3A, and Sentinel-2B, were classified into six land cover classes, including water, road, vegetation, building, vacant, and shadow. The KOMPSAT images are provided by Korea Aerospace Research Institute (KARI), and the Sentinel-2B image was provided by the European Space Agency (ESA). The training samples were manually digitized for each land cover class and considered the reference image. The predicted images were compared to the actual data to obtain the accuracy assessment using a confusion matrix analysis. In addition, the time-consuming training and classifying were recorded to evaluate the model performance. The results showed that the KOMPSAT-3A image has the highest overall accuracy and followed by KOMPSAT-2 and Sentinel-2B results. On the contrary, the model took a long time to classify the higher-resolution image compared to the lower resolution. For that reason, we can conclude that the SVM model performed better in the higher resolution image with the consequence of the longer time-consuming training and classifying data. Thus, this finding might provide consideration for related researchers when selecting satellite imagery for effective and accurate image classification.

Automated Bacterial Cell Counting Method in a Droplet Using ImageJ (이미지 분석 프로그램을 이용한 액적 내 세포 계수 방법)

  • Jingyeong Kim;Jae Seong Kim;Chang-Soo Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.247-257
    • /
    • 2023
  • Precise counting of cell number stands in important position within clinical and research laboratories. Conventional methods such as hemocytometer, migration/invasion assay, or automated cell counters have limited in analytical time, cost, and accuracy., which needs an alternative way with time-efficient in-situ approach to broaden the application avenue. Here, we present simple coding-based cell counting method using image analysis tool, freely available image software (ImageJ). Firstly, we encapsulated RFP-expressing bacteria in a droplet using microfluidic device and automatically performed fluorescence image-based analysis for the quantification of cell numbers. Also, time-lapse images were captured for tracking the change of cell numbers in a droplet containing different concentrations of antibiotics. This study confirms that our approach is approximately 15 times faster and provides more accurate number of cells in a droplet than the external analysis program method. We envision that it can be used to the development of high-throughput image-based cell counting analysis.

Three-dimensional surgical accuracy between virtually planned and actual surgical movements of the maxilla in two-jaw orthognathic surgery

  • Hong, Mihee;Kim, Myung-Jin;Shin, Hye Jung;Cho, Heon Jae;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.50 no.5
    • /
    • pp.293-303
    • /
    • 2020
  • Objective: To investigate the three-dimensional (3D) surgical accuracy between virtually planned and actual surgical movements (SM) of the maxilla in two-jaw orthognathic surgery. Methods: The sample consisted of 15 skeletal Class III patients who underwent two-jaw orthognathic surgery performed by a single surgeon using a virtual surgical simulation (VSS) software. The 3D cone-beam computed tomography (CBCT) images were obtained before (T0) and after surgery (T1). After merging the dental cast image onto the T0 CBCT image, VSS was performed. SM were classified into midline correction (anterior and posterior), advancement, setback, anterior elongation, and impaction (total and posterior). The landmarks were the midpoint between the central incisors, the mesiobuccal cusp tip (MBCT) of both first molars, and the midpoint of the two MBCTs. The amount and direction of SM by VSS and actual surgery were measured using 3D coordinates of the landmarks. Discrepancies less than 1 mm between VSS and T1 landmarks indicated a precise outcome. The surgical achievement percentage (SAP, [amount of movement in actual surgery/amount of movement in VSS] × 100) (%) and precision percentage (PP, [number of patients with precise outcome/number of total patients] × 100) (%) were compared among SM types using Fisher's exact and Kruskal-Wallis tests. Results: Overall mean discrepancy between VSS and actual surgery, SAP, and PP were 0.13 mm, 89.9%, and 68.3%, respectively. There was no significant difference in the SAP and PP values among the seven SM types (all p > 0.05). Conclusions: VSS could be considered as an effective tool for increasing surgical accuracy.

Development of Diode Based High Energy X-ray Spatial Dose Distribution Measuring Device

  • Lee, Jeonghee;Kim, Ikhyun;Park, Jong-Won;Lim, Yong-Kon;Moon, Myungkook;Lee, Sangheon;Lim, Chang Hwy
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.97-106
    • /
    • 2018
  • Background: A cargo container scanner using a high-energy X-ray generates a fan beam X-ray to acquire a transmitted image. Because the generated X-rays by LINAC may affect the image quality and radiation protection of the system, it is necessary to acquire accurate information about the generated X-ray beam distribution. In this paper, a diode-based multi-channel spatial dose measuring device for measuring the X-ray dose distribution developed for measuring the high energy X-ray beam distribution of the container scanner is described. Materials and Methods: The developed high-energy X-ray spatial dose distribution measuring device can measure the spatial distribution of X-rays using 128 diode-based X-ray sensors. And precise measurement of the beam distribution is possible through automatic positioning in the vertical and horizontal directions. The response characteristics of the measurement system were evaluated by comparing the signal gain difference of each pixel, response linearity according to X-ray incident dose change, evaluation of resolution, and measurement of two-dimensional spatial beam distribution. Results and Discussion: As a result, it was found that the difference between the maximum value and the minimum value of the response signal according to the incident position showed a difference of about 10%, and the response signal was linearly increased. And it has been confirmed that high-resolution and two-dimensional measurements are possible. Conclusion: The developed X-ray spatial dose measuring device was evaluated as suitable for dose measurement of high energy X-ray through confirmation of linearity of response signal, spatial uniformity, high resolution measuring ability and ability to measure spatial dose. We will perform precise measurement of the X-ray beamline in the container scanning system using the X-ray spatial dose distribution measuring device developed through this research.

Utility of Lateral Circumflex Femoral Artery Perforator's 3D Image with MD-CT (MD-CT로 얻은 가쪽넙다리휘돌이 관통동맥 3D 영상의 유용성)

  • Park, Soo Ho;Shim, Jeong Su;Lee, Sang Kon;Park, Dae Hwan
    • Archives of Plastic Surgery
    • /
    • v.35 no.4
    • /
    • pp.379-384
    • /
    • 2008
  • Purpose: Currently, using perforator artery flaps especially anterolateral thigh flaps are widely used for reconstruction of extremities, head and neck. Obtaining a precise anatomical picture prior to operation will translate to a more accurate, efficient and safe procedure. Authors used 3D-image work up via 64-slice MDCT to make a more precise preoperative plan. Methods: A total of 10 patients underwent soft tissue reconstruction with anterolateral thigh flap from December 2006 to December 2007. The 64-Channel MDCT (LightSpeed VCT, GE, USA) was used and 3D images were reconstructed. Findings from MDCT were applied to the preoperative planning and confirmed with intraoperative findings. Results: The average number of perforator arteries from lateral circumflex femoral artery was 2. The average lengths of vascular pedicle from the origin of lateral circumflex femoral artery to the first and second perforator artery were 11.0 cm and 20.0 cm, respectively. The average diameter of the pedicle artery was 2.2 mm. The locations of the perforator arteries were mapped and localized on the body surface based on the MDCT result. These were confirmed through direct visualization intraoperatively. Conclusion: MDCT has an advantage of obtaining accurate images of the general anatomy and even fine structures like perforator arteries. By using this state-of-the-art diagnostic imaging technique, it is now possible to make an operative plan safely and easily.

An Ensemble Fingerprint Classification System Using Changes of Gradient of Ridge (융선 기울기의 변화량을 이용한 앙상블 지문분류 시스템)

  • Yoon, Kyung-Bae;Park, Chang-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.545-551
    • /
    • 2003
  • Henry System which is a traditional fingerprint classification model is difficult to apply to a modem Automatic Fingerprint Identification System (AFIS). To tackle this problem, this study is to apply algorithm for an An Ensemble Fingerprint Classroom System using changes of gradient of ridge in order to improve precise joining speed of a large volume of database. The existing classification system, Henry System, is useful in a captured fingerprint image of core point and delta point using paper and ink. However, the Henry System is unapplicable in modem Automatic Fingerprint Identification System (AFIS) because of problems such as size of input sensor and way of input. This study is to suggest an Ensemble Fingerprint Classroom System which can classify 5 basic patterns of Henry System in uncaptured delta image using changes of gradient of ridge. The proposed fingerprint classification technique will make an improvement of precise joining speed by reducing data volume.

Using Contour Matching for Omnidirectional Camera Calibration (투영곡선의 자동정합을 이용한 전방향 카메라 보정)

  • Hwang, Yong-Ho;Hong, Hyun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.125-132
    • /
    • 2008
  • Omnidirectional camera system with a wide view angle is widely used in surveillance and robotics areas. In general, most of previous studies on estimating a projection model and the extrinsic parameters from the omnidirectional images assume corresponding points previously established among views. This paper presents a novel omnidirectional camera calibration based on automatic contour matching. In the first place, we estimate the initial parameters including translation and rotations by using the epipolar constraint from the matched feature points. After choosing the interested points adjacent to more than two contours, we establish a precise correspondence among the connected contours by using the initial parameters and the active matching windows. The extrinsic parameters of the omnidirectional camera are estimated minimizing the angular errors of the epipolar plane of endpoints and the inverse projected 3D vectors. Experimental results on synthetic and real images demonstrate that the proposed algorithm obtains more precise camera parameters than the previous method.