• Title/Summary/Keyword: precise image

Search Result 703, Processing Time 0.026 seconds

Development of Electronic Portal Imaging Device and Treatment Position Verification for Fractionated Stereotatic Radiotherapy

  • Lee, Dong-Hoon;Ji, Young-Hoon;Lee, Dong-Han;Kim, Yoon-Jong;Chilgoo Byun;Hong, Seung-Hong;Rhee, Soo-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.446-449
    • /
    • 2002
  • The video based electronic portal imaging device (EPID), which could display the portal image in near real time, was implemented to verify treatment position error in FSRT(Fractionated Stereotatic Radiation Therapy) instead of a portal film. Also, Developed FSRT system was composed of the stereotactic frame, frame mounting system and collimator cones. The verification of treatment position is very crucial in special therapies like FSRT. In general, the FSRT uses high dpse rate at small field size for treating small intracranial lesions. To evaluate quantitative positioning errors in FSRT, we used the first FSRT image as reference image and obtained the second FSRT image that was moved 2mm intentionally and detected intracranial contours after image processing. The generated 2mm error could be verified by overlapping only contours of two images. Through this study, the radiation treatment efficiency could be improved by performing precise radiation therapy with a developed video based EPID and FSRT.

  • PDF

Generation of 3 Dimensional Image Model from Multiple Digital Photographs (다중 디지털 사진을 이용한 3차원 이미지 모델 생성)

  • 정태은;석정민;신효철;류재평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1634-1637
    • /
    • 2003
  • Any given object on the motor-driven turntable is pictured from 8 to 72 different views with a digital camera. 3D shape reconstruction is performed with the integrated software called by Scanware from these multiple digital photographs. There are several steps such as configuration, calibration, capturing, segmentation, shape creation, texturing and merging process during the shape reconstruction process. 3D geometry data can be exported to cad data such as Autocad input file. Also 3D image model is generated from 3D geometry and texture data, and is used to advertise the model in the internet environment. Consumers can see the object realistically from wanted views by rotating or zooming in the internet browsers with Scanbull spx plug-in. The spx format allows a compact saving of 3D objects to handle or download. There are many types of scan equipments such as laser scanners and photogrammetric scanners. Line or point scan methods by laser can generate precise 3D geometry but cannot obtain color textures in general. Reversely, 3D image modeling with photogrammetry can generate not only geometries but also textures from associated polygons. We got various 3D image models and introduced the process of getting 3D image model of an internet-connected watchdog robot.

  • PDF

Motion Correction in PET/CT Images (PET/CT 영상 움직임 보정)

  • Woo, Sang-Keun;Cheon, Gi-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.172-180
    • /
    • 2008
  • PET/CT fused image with anatomical and functional information have improved medical diagnosis and interpretation. This fusion has resulted in more precise localization and characterization of sites of radio-tracer uptake. However, a motion during whole-body imaging has been recognized as a source of image quality degradation and reduced the quantitative accuracy of PET/CT study. The respiratory motion problem is more challenging in combined PET/CT imaging. In combined PET/CT, CT is used to localize tumors and to correct for attenuation in the PET images. An accurate spatial registration of PET and CT image sets is a prerequisite for accurate diagnosis and SUV measurement. Correcting for the spatial mismatch caused by motion represents a particular challenge for the requisite registration accuracy as a result of differences in PET/CT image. This paper provides a brief summary of the materials and methods involved in multiple investigations of the correction for respiratory motion in PET/CT imaging, with the goal of improving image quality and quantitative accuracy.

Development of combustion zone monitoring system for a blast furnace (용광로 연소대 관리시스템 개발)

  • Choi, Tae-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.318-322
    • /
    • 1997
  • A prototype of combustion zone monitoring system as been developed and installed into tuyeres of the blast furnace. The system consists of CCD(charge coupled device) cameras, sonic flow meters, an image processor and a personal computer. The personal computer collects raceway luminance data and operational data from the image processor that is connected to the color CCD camera from the blast furnace process computer, respectively. In addition, the sonic flow meters supply coal injection rate data to the personal computer. Then, the personal computer evaluates the combustion conditions with the raceway inspection algorithm. This integrated monitoring system allows us to detect abnormal raceway conditions and the clogging status of coal injection pipe. The image processing techniques of the system enable us to effectively monitor unburnt coal sticking to tuyere tip and injection lance wear conditions. Such a developed system ensures rapid and precise raceway inspection. The image processing capability of the system has helped operator to early detect both the unburnt coal sticking problem and the errosion problem of injection lance. Furthermore, the system could control the abnormal raceway condition based the the analysis results obtained from combustion monitoring.

  • PDF

Development of Confocal Imaging System for Wafer Inspection (개발 웨이퍼 검사위한 Confocal 이미징 시스템의 개발)

  • Ko, Kuk-Won;Nguyen, Cong Dai;Koh, Kyung-Cheol
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.108-112
    • /
    • 2010
  • Confocal Imaging System is an essential machine for a wide range of inspection wafer. For concurrent and fast acquiring the image data of four channels, the new image acquisition system used the protocol of camera-link standard with the full mode of configuration in interconnection with a frame grabber integrated in a computer, which is popularly used for many cameras, so the programming environment of image processing is optional such as Visual C++, Matlab. In addition, many conventional methods were coordinately used for contribution to build the high quality of images for precise processing analog signals of PhotoMutiplier Tubes(PMTs), accurate control of scanning device, sensitivity of PMTs, and laser source. The prototype of new image acquisition system, could meet the goal of development, it is used in LSCM for high content screening to investigation the processes of elements of living specimens at the same time by simultaneous grab image data on 4 PMTs channels.

  • PDF

Analysis of Geolocation Accuracy of Precision Image Processing System developed for CAS-500 (국토관측위성용 정밀영상생성시스템의 위치정확도 분석)

  • Lee, Yoojin;Park, Hyeongjun;Kim, Hye-Sung;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.893-906
    • /
    • 2020
  • This paper reports on the analysis of the location accuracy of a precision image generation system manufactured for CAS 500. The planned launch date of the CAS 500 is 2021, and since it has not yet been launched, the analysis was performed using KOMPSAT-3A satellite images having similar specifications to the CAS 500. In this paper, we have checked the geolocation accuracy of initial sensor model, the model point geolocation accuracy of the precise sensor model, the geolocation accuracy of the precise sensor model using the check point, and the geolocation accuracy of the precise orthoimage using 30 images of the Korean Peninsula. In this study, the target geolocation accuracy is to have an RMSE within 2 pixels when an accurate ground control point is secured. As a result, it was confirmed that the geolocation accuracy of the precision sensor model using the checkpoint was about 1.85 pixels in South Korea and about 2.04 pixels in North Korea, and the geolocation accuracy of the precise orthoimage was about 1.15 m in South Korea and about 3.23 m in North Korea. Overall, it was confirmed that the accuracy of North Korea was low compared to that of South Korea, and this was confirmed to have affected the measured accuracy because the GCP (Ground Control Point) quality of the North Korea images was poor compared to that of South Korea. In addition, it was confirmed that the accuracy of the precision orthoimage was slightly lower than that of precision sensor medel, especially in North Korea. It was judged that this occurred from the error of the DTM (Digital Terrain Model) used for orthogonal correction. In addition to the causes suggested by this paper, additional studies should be conducted on factors that may affect the position accuracy.

Destination Image Analysis of Daegu Using Social Network Analysis: Social Media Big Data (사회연결망 분석을 활용한 대구의 관광지 이미지 분석: 온라인 빅데이터를 중심으로)

  • Seo, Jung-A;Oh, Ick Keun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.7
    • /
    • pp.443-454
    • /
    • 2017
  • A positive destination image has an impact on the tourist arrivals and economic growth of the tourist destination. Recently, the content generated by sharing tourist experiences and destination information on the internet has been increasing. The online content has the potential to become a major tourist decision source and provide more in-depth materials and richer content to extract destination image, insight and tourist's perceptions of the destination. This study was designed to explore the destination image of Daegu online and draw lessons for successful image management in an era of big data. Text mining approach and social network analysis were conducted to extract destination image determining elements and assess the influence of the elements. The result showed that destination image elements related to tourist infra-structures and culture, history and art affected the overall destination image of Daegu. Destination marketers should make an effort to grasp these precise destination image and seek ways to boost competitiveness as a tourist destination.

A Real-time Motion Object Detection based on Neighbor Foreground Pixel Propagation Algorithm (주변 전경 픽셀 전파 알고리즘 기반 실시간 이동 객체 검출)

  • Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • Moving object detection is to detect foreground object different from background scene in a new incoming image frame and is an essential ingredient process in some image processing applications such as intelligent visual surveillance, HCI, object-based video compression and etc. Most of previous object detection algorithms are still computationally heavy so that it is difficult to develop real-time multi-channel moving object detection in a workstation or even one-channel real-time moving object detection in an embedded system using them. Foreground mask correction necessary for a more precise object detection is usually accomplished using morphological operations like opening and closing. Morphological operations are not computationally cheap and moreover, they are difficult to be rendered to run simultaneously with the subsequent connected component labeling routine since they need quite different type of processing from what the connected component labeling does. In this paper, we first devise a fast and precise foreground mask correction algorithm, "Neighbor Foreground Pixel Propagation (NFPP)" which utilizes neighbor pixel checking employed in the connected component labeling. Next, we propose a novel moving object detection method based on the devised foreground mask correction algorithm, NFPP where the connected component labeling routine can be executed simultaneously with the foreground mask correction. Through experiments, it is verified that the proposed moving object detection method shows more precise object detection and more than 4 times faster processing speed for a image frame and videos in the given the experiments than the previous moving object detection method using morphological operations.

Recognition of Colors of Image Code Using Hue and Saturation Values (색상 및 채도 값에 의한 이미지 코드의 칼라 인식)

  • Kim Tae-Woo;Park Hung-Kook;Yoo Hyeon-Joong
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.4
    • /
    • pp.150-159
    • /
    • 2005
  • With the increase of interest in ubiquitous computing, image code is attracting attention in various areas. Image code is important in ubiquitous computing in that it can complement or replace RFID (radio frequency identification) in quite a few areas as well as it is more economical. However, because of the difficulty in reading precise colors due to the severe distortion of colors, its application is quite restricted by far. In this paper, we present an efficient method of image code recognition including automatically locating the image code using the hue and saturation values. In our experiments, we use an image code whose design seems most practical among currently commercialized ones. This image code uses six safe colors, i.e., R, G, B, C, M, and Y. We tested for 72 true-color field images with the size of $2464{\times}1632$ pixels. With the color calibration based on the histogram, the localization accuracy was about 96%, and the accuracy of color classification for localized codes was about 91.28%. It took approximately 5 seconds to locate and recognize the image code on a PC with 2 GHz P4 CPU.

  • PDF

Defect Length Measurement using Underwater Camera and A Laser Slit Beam

  • Kim, Young-Hwan;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.746-751
    • /
    • 2003
  • A method of measuring the length of defects on the wall of the spent nuclear fuel pool using the image processing and a laser slit beam is proposed. Since the defect monitoring camera is suspended by a crane and hinged to the crane hook, the camera viewing direction can not be adjusted to the orientation that is exactly perpendicular to the wall. Thus, the image taken by the camera, which is horizontally rotated along the axis of the camera supporting beam, is distorted and thus, the precise length can not be measured. In this paper, by using the LASER slit beam generator, the horizontally rotated angle of the camera is estimated. Once the angle is obtained, the distorted image can be easily reconstructed to the image normal to the wall. The estimation algorithm adopts a 3-dimensional coordinate transformation of the image plane where both the laser slit beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect taken at arbitrary rotated angle can be reconstructed to an image normal to the wall. From the result of a series of experiments, the accuracy of the defect is measured within 0.6 and 1.3 % error bound of real defect size in the air and underwater, respectively under 30 degree of the inclined angle of the laser slit beam generator. Also, the error increases as the inclined angle increases upto 60 degree. Over this angle, the defect length can not be measured since the defect image disappears. The proposed algorithm enables the accurate measurement of the defect length only by using a single camera and a laser slit beam.

  • PDF