• 제목/요약/키워드: precipitation patterns

검색결과 310건 처리시간 0.02초

한국의 하계 강수량의 순변화 유형과 강수지역 (The Variation Patterns over a Period of 10 Days and Precipitation Regions of Summer Precipitation in Korea)

  • 박현욱;류찬수
    • 한국지구과학회지
    • /
    • 제26권5호
    • /
    • pp.417-428
    • /
    • 2005
  • 아시아의 동안에 위치한 한반도는 수리적, 지리적 요인에 의해 지역에 따라 강수현상 및 탁월 일기의 다소와 그 계절변화가 크다. 이러한 탁월한 날씨의 특징은 한국의 하계의 강수출현율과 그 순변화에 잘 반영되고 있다. 본 논문은 한국의 78개 관측지점의 하계강수량$(1991\~2003)$의 순별 평균값에 대해 주성분분석법을 응용하여 하계강수량의 순변화형을 추출하고, 그의 공간스케일과 강수량의 다소에 따라 강수지역구분을 한 것이다. 주성분 분석에 의해 추출된 주성분 벡터와 진폭계수(Rs)에 따라 하계 강수량 순변화의 전형적인 특징은 두 개의 순변화형으로 표현되며 그 누적기여율은 $64.3\%$이다. 또한 한국의 하계 강수량의 순변화형은 $A\~K$형까지 9개가 추출되었고, 강수지역은 17개형으로 분류되었다.

Classification of Daily Precipitation Patterns in South Korea using Mutivariate Statistical Methods

  • Mika, Janos;Kim, Baek-Jo;Park, Jong-Kil
    • 한국환경과학회지
    • /
    • 제15권12호
    • /
    • pp.1125-1139
    • /
    • 2006
  • The cluster analysis of diurnal precipitation patterns is performed by using daily precipitation of 59 stations in South Korea from 1973 to 1996 in four seasons of each year. Four seasons are shifted forward by 15 days compared to the general ones. Number of clusters are 15 in winter, 16 in spring and autumn, and 26 in summer, respectively. One of the classes is the totally dry day in each season, indicating that precipitation is never observed at any station. This is treated separately in this study. Distribution of the days among the clusters is rather uneven with rather low area-mean precipitation occurring most frequently. These 4 (seasons)$\times$2 (wet and dry days) classes represent more than the half (59 %) of all days of the year. On the other hand, even the smallest seasonal clusters show at least $5\sim9$ members in the 24 years (1973-1996) period of classification. The cluster analysis is directly performed for the major $5\sim8$ non-correlated coefficients of the diurnal precipitation patterns obtained by factor analysis In order to consider the spatial correlation. More specifically, hierarchical clustering based on Euclidean distance and Ward's method of agglomeration is applied. The relative variance explained by the clustering is as high as average (63%) with better capability in spring (66%) and winter (69 %), but lower than average in autumn (60%) and summer (59%). Through applying weighted relative variances, i.e. dividing the squared deviations by the cluster averages, we obtain even better values, i.e 78 % in average, compared to the same index without clustering. This means that the highest variance remains in the clusters with more precipitation. Besides all statistics necessary for the validation of the final classification, 4 cluster centers are mapped for each season to illustrate the range of typical extremities, paired according to their area mean precipitation or negative pattern correlation. Possible alternatives of the performed classification and reasons for their rejection are also discussed with inclusion of a wide spectrum of recommended applications.

강수일과 그 연변화형에 의한 한국의 지역구분 (Regional Division of Korea by Precipitation Days and Annual Change Pattern)

  • 박현욱
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.1-1
    • /
    • 1995
  • An attempt was made to study the subdivision of Korea by the annual amount and the annual change pattern of monthly precipitation days(that is one of the important elements of the precipitation characteristics), using the mean values for the years 1961-1990 at the 68 stations. The amplitudes of annual change were normalized and using these values, the principal component analysis was applied to determine the annual change patterns. The results show that they are expressed by the combinations of the three change patterns in almost whole regions of Korea. As a result,the annual change pattern of precipitation days in Korea is classified into 8 types from A to e,in detail, 36 types from A0 to e$\circled2$.And regional division of precipitation days in Korea is divided into 13 regions from I a to IIIC,into detail, 41 regions from I no to IIICl.

강수일과 그 연변화형에 의한 한국의 지역구분 (Regional Division of Korea by Precipitation Days and Annual Change Pattern)

  • 박현욱
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.387-402
    • /
    • 1995
  • An attempt was made to study the subdivision of Korea by the annual amount and the annual change pattern of monthly precipitation days(that is one of the important elements of the precipitation characteristics), using the mean values for the years 1961-1990 at the 68 stations. The amplitudes of annual change were normalized and using these values, the principal component analysis was applied to determine the annual change patterns. The results show that they are expressed by the combinations of the three change patterns in almost whole regions of Korea. As a result, the annual change pattern of precipitation days in Korea is classified into 8 types from A to e, in detail, 36 types from A0 to e$\circled2$.And regional division of precipitation days in Korea is divided into 13 regions from I a to IIIC, into detail, 41 regions from I no to IIICl.

  • PDF

Temporal Variation of the Western Pacific Subtropical High Westward Ridge and its Implicationson South Korean Precipitation in Late Summer

  • Ahn, Kuk-Hyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.24-24
    • /
    • 2019
  • This study investigates variations in the Western Pacific Subtropical High (WPSH) and its impact on South Korean precipitation in late summer during the period between 1958 and 2017. Composite analysis reveals that precipitation occurrence is directly linked to the displacement of the WPSH western ridge, a single, large-scale feature of the atmosphere in the Pacific Ocean. When WPSH ridging is located northwest (NW) of its climatological mean position, excessive precipitation is expected in late summer due to enhanced moisture transport. On the other hand, a precipitation deficit is frequently observed when the western ridge is located in the southeast (SE). Different phases of the WPSH are associated with lagged patterns of Pacific and Atlantic atmospheric and oceanic variability, introducing the potential to predict variability in the WPSH western ridge and its climate over northern East Asia by one month. Based on the identified SST patterns, a simple statistical model is developed and improvement in the ability to predict is confirmed through a cross-validation framework. Finally, the potential for further improvements in WPSH-based predictions is addressed.

  • PDF

우리나라 내습태풍 유형에 따른 강우특성 및 종관기후학적 분석 (Assessment of Precipitation Characteristics and Synoptic Pattern Associated with Typhoon Affecting the South Korea)

  • 김태정;박건철;권현한
    • 한국수자원학회논문집
    • /
    • 제48권6호
    • /
    • pp.463-477
    • /
    • 2015
  • 최근 빈번하게 발생하는 이상기후 현상은 수자원관리에 많은 어려움을 주고 있으며 예상치 못한 기상관련 재난피해를 야기하고 있다. 특히, 기후변화에 의해 점차 태풍의 세력이 강력해짐에 따라 태풍은 위험기상으로 인지된다. 본 연구의 주요목적은 태풍으로 인하여 발생하는 강우특성 및 종관기후학적 분석을 수행하는 것으로 일본 지역특별기상센터(Regional Specialized Meteorological Center Tokyo Typhoon Center, RSMC)에서 제공하는 1973년부터 2012년의 6시간 간격 최적경로(best track) 자료를 사용하여 우리나라에 상륙한 태풍사상만을 대상으로 태풍의 상륙 지속시간(내습시간)을 총 4개의 시간구간으로 구분하여 각 내습유형에 따른 강우특성 및 종관기후학적 분석을 수행하였다. 본 연구를 통한 결과는 태풍의 진로 및 이동속도를 예측 가능한 현 시점에서, 우리나라 태풍내습시 내습유형에 따른 홍수방어 및 사전대피와 같은 재해관리 측면에서 매우 유용한 정보를 제공할 것으로 사료된다. 향후 연구로서 본 연구를 통해서 확인된 기상학적 패턴을 활용하여 단기 태풍강수량 모의기법 개발이 필요할 것으로 판단된다.

하계강수량과 그 순변화형에 의한 호남지방의 지역 구분 (Regional Divisions of Honam Region by Summer Precipitation and Variation Patterns over a Period of 10 days)

  • 박현욱
    • 한국지역지리학회지
    • /
    • 제11권1호
    • /
    • pp.101-113
    • /
    • 2005
  • 한반도의 남서부에 위치한 호남지방은 수리적, 지리적 요인에 의해 지역에 따라 하계의 강수현상 및 탁월일기의 다소와 그 계절변화가 크다. 본 논문은 AWS 63개 지점을 포함한 호남의 79개 기상관측지점의 하계강수량(1994$\sim$2003)과 그 순변화형(강수특성 표현의 중요한 한 요소임)에 대해 순별 강수량의 다소와 순장수량의 주성분벡터와 진폭계수(Rs)를 이용하여, 호남 각 지역에서의 하계강수량 순변화형을 수량적으로 추출하고, 그 공간스케일의 변동을 규명해, 그에 따른 호남지방의 강수지역 구분을 시도한 것이다. 그 결과 호남지방의 하계강수량 순변화의 전형적 특징은 상위 4개의 순변화형으로 표현되며 그 누적기여율은 78.0%이다. 또한 호남지방의 하계강수량의 순변화형은 A-K형까지 11개가 추출되었고, 강수지역은 18개형 지역으로 구분되었다.

  • PDF

On the Characteristics of the Precipitation Patterns in Korea Due to Climate Change

  • Park, Jong-Kil;Seong, Ihn-Cheol;Kim, Baek-Jo;Jung, Woo-Sik;Lu, Riyu
    • 한국환경과학회지
    • /
    • 제23권1호
    • /
    • pp.25-37
    • /
    • 2014
  • In the present study, we analyzed precipitation patterns and diurnal variation trends of hourly precipitation intensity due to climate change. To that end, we used the hourly precipitation data obtained from 26 weather stations around South Korea, especially Busan, from 1970 to 2009. The results showed that the hourly precipitation was concentrated on a specific time of day. In particular, the results showed the so-called "morning shift" phenomenon, which is an increase in the frequency and intensity of hourly precipitation during the morning. The morning shift phenomenon was even more pronounced when a higher level of hourly precipitation intensity occurred throughout the day. Furthermore, in many regions of Korea, including Busan, this morning shift phenomenon became more prevalent as climate change progressed.

김해지역의 산성강우와 기압유형 (Weather Patterns and Acid Rain at Kimhae Area)

  • 박종길;황용식
    • 한국환경과학회지
    • /
    • 제8권3호
    • /
    • pp.271-280
    • /
    • 1999
  • This study was carried out to investigate the characteristics of acidity in the precipitation and weather patterns that were influenced it at Kimhae area from March, 1992 to June, 1994. The range of pH value in the precipitation at Kimhae is 3.45 to 6.80 and the average is pH 4.62, and the major anion components associated with acidity in the precipitation are $Cl^-, SO_4^{-2}, NO_3^-$. These distributions are to be expected the influence of industrialization such as, urbanization and construction of industrial complex at Kimhae area and the long range trasporting of air pollutants from China. The weather patterns governing the acid rain at Kimhae were classified broadly into four types(Cyclone(type I-a, type I-b), Migratory Anticyclone(type II), Tropical Cyclone(type III), Siberia High(type IV) and weather pattern which had the most occurrence frequency of acid rain was type I-a and the average pH value of precipitation in this pattern was 4.45, and we are found that the source area of air mass which was accompanied with high acidic precipitation in Kimhae was the central China include with Peking through the analysis of surface weather maps, 850 hPa wind fields, and the streamline analyses.

  • PDF

최근 5년(2008~2012) 간 우리나라에 내린 봄비의 종관기상학적 특성 (The Synoptic Meteorological Characteristics of Spring Rainfall in South Korea during 2008~2012)

  • 박소연;이영곤;김정윤;안숙희;김백조
    • 한국환경과학회지
    • /
    • 제22권4호
    • /
    • pp.443-451
    • /
    • 2013
  • Spring rainfall events were comprehensively analyzed based on the distribution of precipitation amount and the related synoptic weather between 2008~2012. Forty-eight cases are selected among the rain events of the entire country, and each distribution of the 24-hour accumulated precipitation amount is classified into three types: evenly distributed rain(Type 1), more rain in the southern area and south coast region (Type 2), and more rain in the central region (Type 3), respectively. Type 1 constitutes the largest part(35 cases, 72.9%) with mean precipitation amount of 19.4 mm, and the 17 cases of Type 1 are observed in March. Although Type B and C constitutes small parts (11 cases, 22.9% and 2 cases, 4.2%), respectively. The precipitation amount of these types is greater than 34.5 mm and occurred usually in April. The main synoptic weather patterns affecting precipitation distribution are classified into five patterns according to the pathway of low pressures. The most influential pattern is type 4, and this usually occurs in March, April, and May (Low pressures from the north and the ones from the west and south consecutively affect South Korea, 37.5%). The pattern 3(Low pressures from the south affect South Korea, 25%) happens mostly in April, and the average precipitation is usually greater than 30 mm. This value is relatively higher than the values in any other patterns.