• Title/Summary/Keyword: precipitation method$CO_{2}$

Search Result 276, Processing Time 0.028 seconds

Effect of Precipitants and Precipitation Conditions on Synthesis of β-Ga2O3 Powder (침전제의 종류 및 침전 공정의 변화가 β-Ga2O3 분말 합성에 미치는 영향)

  • Hwang, Su Hyun;Choi, Young Jong;Ko, Jeong Hyun;Kim, Tae Jin;Jeon, Deok Il;Cho, Woo Suk;Han, Kyu Sung
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.214-220
    • /
    • 2014
  • In this research, a precipitation method was used to synthesize ${\beta}-Ga_2O_3$ powders with various particle morphologies and sizes under varying precipitation conditions, such as gallium nitrate concentration, pH, and aging temperature, using ammonium hydroxide and ammonium carbonate as precipitants. The obtained powders were characterized in detail by XRD, SEM, FT-IR, and TG-DSC. From the TG-DSC result, GaOOH phase was transformed to ${\beta}-Ga_2O_3$ at around $742^{\circ}C$, and weight loss percent was about 14 % when $NH_4OH$ was used as a precipitant. Also, ${\beta}-Ga_2O_3$ formed at $749^{\circ}C$ and weight loss percent was about 15 % when $(NH)_2CO_3$ was used as a precipitant. XRD results showed that the obtained $Ga_2O_3$ had pure monoclinic phase in both cases. When $(NH)_2CO_3$ was used as a precipitant, the particle shape changed and became irregular. The range of particle size was about $500nm-4{\mu}m$ based on various concentrations of gallium nitrate solution with $NH_4OH$. The particle size was increased from $1-2{\mu}m$ to $3-4{\mu}m$ and particle shape was changed from spherical to bar type by increasing aging temperature over $80^{\circ}C$.

Catalytic Combustion of Benzene over CuO-CeO2 Mixed Oxides Prepared by Co-precipitation Method (침전법으로 제조된 CuO-CeO2 혼합산화물에서 벤젠의 촉매연소반응)

  • Hong, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.312-317
    • /
    • 2014
  • Catalytic combustion of benzene over CuO-$CeO_2$ mixed oxides prepared by co-precipitation method were investigated. The CuO-$CeO_2$ mixed oxides were also prepared using different precipitant and CuO precursor. They were characterized by XRD, BET, XPS and $H_2-TPR$. In the CuO-$CeO_2$ catalysts, characteristic copper oxide peaks were shown at $2{\Theta}=35.5^{\circ}$ and $38.5^{\circ}$ regardless of the precipitant. The Cu0.35 catalyst prepared using $NH_4OH$ as a precipitant revealed the highest activity on the combustion of benzene. In addition, the pretreatment with hydrogen enhanced the catalytic activity and the catalyst reduced at $400^{\circ}C$ showed the highest activity on the combustion of benzene.

Synthesis, Characterization and Catalytic Activity of Ce1MgxZr1-xO2 (CMZO) Solid Heterogeneous Catalyst for the Synthesis of 5-Arylidine Barbituric acid Derivatives

  • Rathod, Sandip B.;Gambhire, Anil B.;Arbad, Balasaheb R.;Lande, Machhindra K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.339-343
    • /
    • 2010
  • A series of $Ce_1Mg_xZr_{1-x}O_2$ (CMZO) mixed metal oxide with different molar ratio were prepared by simple co-precipitation method. The prepared materials were tested for their catalytic activity performance using Knoevenagel condensation of various aromatic aldehydes with barbituric acid under solvent-free condition in microwave. The best catalytic activity was obtained with CMZO (1:0.6:0.4). The synthesized materials were characterized by using XRD, FT-IR, SEM-EDS techniques.

Influence of Precursor on the Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2 Cathode for the Lithium Secondary Battery (전구체의 물성에 따른 리튬 2차전지용 Li(Ni0.5Co0.2Mn0.3)O2의 전기화학적 특성 변화)

  • Kang, Donghyun;Arailym, Nurpeissova;Chae, Jeong Eun;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.191-197
    • /
    • 2013
  • The one of the cathode material, $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$, was synthesized by the precursor, $Ni_{0.5}Co_{0.2}Mn_{0.3}(OH)_2$, from the co-precipitation method and the morphologies of the primary particle of precursors were flake and needle-shape by controlling the precipitation parameters. Identical powder properties, such as particle size, tap density, chemical composition, were obtained by same process of lithiation and heat-treatment. The relation between electrochemical performances of $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ and the primary particle morphology of precursors was analyzed by SEM, XRD and EELS. In the $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ cathode from the needle-shape precursor, the primary particle size was smaller than that from flake-shape precursor and high Li concentration at grain edge comparing grain center. The cycle and rate performances of the cathode from needle-shape precursor shows superior to those from flake-shape precursor, which might be attributed to low charge-transfer resistance by impedance measurement.

Effect of reaction temperature and time on the formation of calcite precipitation of recycled concrete aggregate (RCA) for drainage applications

  • Boo Hyun Nam;Jinwoo An;Toni Curate
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.65-75
    • /
    • 2023
  • Recycled concrete aggregate (RCA) is widely used as a construction material in road construction, concrete structures, embankments, etc. However, it has been reported that calcite (CaCO3) precipitation from RCA can be a cause of clogging when used in drainage applications. An accelerated calcite precipitation (ACP) procedure has been devised to evaluate the long-term geochemical performance of RCA in subsurface drainage systems. While the ACP procedure was useful for the French Drain application, there remained opportunities for improvement. In this study, key factors that control the formation of calcite precipitation were quantitatively evaluated, and the results were used to improve the current prototype ACP method. A laboratory parametric study was carried out by investigating the effects of reaction temperature and time on the formation of calcite precipitation of RCA, with determining an optimum reaction temperature and time which maximizes calcite precipitation. The improved ACP procedure was then applied to RCA samples that were graded for Type I Underdrain application, to compare the calcite precipitation. Two key findings are (1) that calcite precipitation can be maximized with the optimum heating temperature (75℃) and time (17 hours), and (2) the potential for calcite precipitation from RCA is not as significant as for limestone. With the improved ACP procedure, the total amount of calcite precipitation from RCAs within the life cycle of a drain system can be determined when RCAs from different sources are used as pipe backfill materials in a drain system.

Crystallization of Ferrite Powder Using Ultrasonic Wave (초음파를 이용한 페라이트 분말의 결정화)

  • 신현창;오재희;이재춘;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.181-185
    • /
    • 2000
  • A new technique capable of accelerating the crystallization of ferrite powder at low temperature is developed. Effects of the ultrasonic waves on the crystallization were studied for ferrite powders prepared using the co-precipitation method. The crystallization of the ferrite powders exposed to the ultrasonic waves were characterized by the XRD. The amorphous ferrite powders prepared using the co-precipitation method were crystallized as a result of the exposure to the ultrasonic waves for 5h and the crystallization of the ferrite powders became more enhanced in proportion to the time exposed. The ferrite powder exposed to the ultrasonic waves for 25h had higher crystallinity a larger specific surface area than the ferrite powder calcined at 500$^{\circ}C$ for 2h.

  • PDF

Microstructures and Mechanical Properties of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 미세구조 및 기계적 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.991-1003
    • /
    • 1990
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent, various types of metal hydroxides were obtained by single precipitation(series A) and co-precipitation(series B) method at the pH condition between 7 and 11. Fine Al2O3-ZrO2 powders were prepared at optimum calcination condition and the effects of ZrO2 on microstructures and mechanical properties of Al2O3 were investigated. The composition of Al2O3/ZrO2 composites wax fixed as Al2O3-15 v/o ZrO2(+3m/o Y2O3). ZrO2 limited the grain growth of Al2O3 and increased grain size homogeneity of Al2O3 more effectively than MgO.Flexural strength values in Al2O3 and Al2O3/ZrO2 composites were 340-430 MPa and 540-820 MPa, respectively, and the effect of strength improvement showed 20-50% by adding ZrO2 to Al2O3. Fracture toughness of Al2O3/ZrO2 composites was improved by stress-induced phase transformation of tetragonal ZrO2 and toughening effect by microcrack was not observed. Also, ZrO2 particles located at Al2O3 grain junction contributed to toughening, while spherical ZrO2 particles located within Al2O3 grain did not contribute to toughening. Weibull moduli of Al2O3 ceramics and Al2O3/ZrO2 composites of series A and series B were 4.34, 5.17 and 9.06, respectively. Above 0.5 of failure probability, strength values in Al2O3 ceramics and Al2O3/ZrO3 composites of series A and series B were above 400 MPa, 700 MPa and 650 MPa, respectively.

  • PDF

Thermal Shock Behavior of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 열충격 거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics, and the effects of stress-induced phase transformation of ZrO2 on thermal shock behavior of Al2O3-ZrO2 ceramics were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Metal hydroxides were obtained by single precipitation(process A) and co-precipitation(process B) method at the condition of pH=7, and the composition of Al2O3-ZrO2 composites was fixed as Al2O3-15v/o ZrO2(+3m/o Y2O3). Critical temperature difference showing rapid strength degradation by thermal shock showed higher value in Al2O3/ZrO2 composites(process A : 20$0^{\circ}C$, process B : 215$^{\circ}C$) than in Al2O3(175$^{\circ}C$). The improvement of thermal shock property for Al2O3/ZrO2 composites was mainly due to the increase of strength at room temperature by adding ZrO2. The strength degradation was more severe for the sample with higher strength at room temperature. Crack initiation energies by thermal shock showed higher values in Al2O3/ZrO2 composites than in Al2O3 ceramics due to increase of fracture toughness by ZrO2.

  • PDF

WO3 Fabrication and Thermal Spray Coating of WC-Co using Recycled Ammonium Paratungstate (APT) (재활용 APT를 이용한 WO3 제조와 WC-Co 의 용사코팅)

  • Chung, J. K.;Kim, S. J.;On, J. H.;Moon, H. S.;Pee, J. H.;Ha, T. K.;Park, S. Y.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.287-292
    • /
    • 2015
  • The possibility of chemical precipitation for recycled ammonium paratungstate (APT) was studied. WO3 particles were synthesized by chemical precipitation method using a 1:2 weight ratio of APT:DI-water. At the 500℃ sintering temperature, the X-ray diffraction results showed that APT completely decomposed to WO3. For the granulated powder WC-Co, vacuum heat treatment at proper temperatures increases tap density and flow-ability. Hardness of the WC-Co thermal spray coating layer was measured in the range HV 831~1266. Spray conditions for the best characteristic values were an oxygen flow rate=1500 scfh, a fuel flow rate = 5.25gph and a gun distance = 320mm.