• 제목/요약/키워드: precipitation events

검색결과 371건 처리시간 0.028초

Episode Analysis of the Habit and Phase Changes of Snow Crystals in the Wintertime Yeongdong Region (겨울철 영동지역 눈 결정 습성과 성상 변화 에피소드 분석)

  • Young-Gil Choi;Byung-Gon Kim;Ji-Yun Kim;Tae-Yeon Kim;Jin-Heon Han;GyuWon Lee;Kwonil Kim;Ki-Hoon Kim;Byung-Hwan Lim
    • Atmosphere
    • /
    • 제34권2호
    • /
    • pp.139-151
    • /
    • 2024
  • The Yeongdong region has suffered from severe snowstorms and the relevant damage such as traffic accidents on slippery roads, and the collapse of greenhouses and temporary buildings. While a lot of research on snowfall has been conducted, the detailed study of snow crystals' phase and habit through intensive observations and the relevant microphysical analysis is still lacking. Therefore, a snowflake camera, PARSIVEL, and intensive radiosonde soundings were utilized to investigate phase and habit changes in solid precipitation. Two remarkable episodes of phase and habit changes were selected such as 19 March 2022 and 15 February 2023. Both events occurred in the synoptic condition of the High in the north and the Low passing by the south, which was accompanied by rapid temperature cooling below 2.5 km. During the events of a short period between 3 to 6 hours, the temperature at 850 hPa decreased by about 4 to 6℃. This cooling led to a change in the main habit of snow particles from riming to aggregate, identified with both MASC and PARSIVEL. Meanwhile, the LDAPS model analyses do not successively represent the rapid cooling and short-term variations of solid precipitation, probably by virtue of overestimating low-level equivalent potential temperature during these periods. The underlying causes of these the low-level temperature variations within 6 hours, still remain unclear. It might be associated with mesoscale orographic phenomenon due to the mountains and East Sea effects, which certainly needs an intensive and comprehensive observation campaign.

An analysis of runoff characteristic by using soil moisture in Sulma basin (설마천 연구지역에서의 토양수분량을 활용한 유출 발생 특성분석)

  • Kim, Kiyoung;Lee, Yongjun;Jung, Sungwon;Lee, Yeongil
    • Journal of Korea Water Resources Association
    • /
    • 제52권9호
    • /
    • pp.615-626
    • /
    • 2019
  • Soil moisture and runoff have very close relationship. Especially the water retention capacity and drainage characteristics of the soil are determined by various factors of the soil. In this study, a total of 40 rainfall events were identified from the entire rainfall events of Sulma basin in 2016 and 2017. For each selected events, the constant-K method was used to separate direct runoff and baseflow from total flow and calculate the runoff coefficient which shows positive exponential curve with Antecedent Soil Moisture (ASM). In addition to that, the threshold of soil moisture was determined at the point where the runoff coefficient starts increasing dramatically. The threshold of soil moisture shows great correlation with runoff and depth to water table. It was founded that not only ASM but also various factors, such as Initial Soil Moisture (ISM), storage capacity of soil and precipitation, affect the results of runoff response. Furthermore, wet condition and dry condition are separated by ASM threshold and the start and peak response are analyzed. And the results show that the response under wet condition occurred more quickly than that of dry condition. In most events occurred in dry condition, factors reached peak in order of soil moisture, depth to water table and runoff. However, in wet condition, they reached peak in order of depth to water table, runoff and soil moisture. These results will help identify the interaction among factors which affect the runoff, and it will help establish the relationship between various soil conditions and runoff.

The Analysis of planning methode and case study for Model 'Climate Change Adaptation City' (기후변화 적응도시 모델개발을 위한 계획기법 및 사례 분석)

  • Kim, Jongkon
    • KIEAE Journal
    • /
    • 제12권4호
    • /
    • pp.13-19
    • /
    • 2012
  • The Earth's surface temperature still continues to rise, and extreme weather phenomena such as heat waves, drought, and precipitation have been repeated every year. It is reported that international communities attribute the main cause of the Earth's surface temperature rise to the excessive use of the fossil energy. Recently, the damage caused by climate change is getting worse, and the place where we live is suffering the most. Cities have been continuously growing not only meeting the basic functions of human habitation, work and leisure but also being places for various economic and social activities. But Cities, the victims of climate change, have grown only considering human needs and convenience rather than predicting their physical and ecological systems(Albedo effects, urban microclimate, resources and energy of the circulatory system, etc). In other words, the cities offer the cause of the problems of climate change, and even worsen the extreme weather phenomena without coping with them. Therefore, it is urgent priorities to protect the climate, to prevent the causes of the extreme weather phenomena and to enhance the adaptive capacity for the worse weather events. This study is to derive the concept for adapting to these climate changes which can make cities escape from exposure to these climate change impacts and make themselves safer places to live. And it analyzes some European cities and present developing models to implement planning methods. In this study, the concept of the climate adaptive cities will be suggested to prepare the adaptation measures for urban planners, and climate change adaptation models will be presented by analyzing some preliminary cases.

Development of radar-based quantitative precipitation forecasting using spatial-scale decomposition method for urban flood management (도시홍수예보를 위한 공간규모분할기법을 이용한 레이더 강우예측 기법 개발)

  • Yoon, Seongsim
    • Journal of Korea Water Resources Association
    • /
    • 제50권5호
    • /
    • pp.335-346
    • /
    • 2017
  • This study generated the radar-based forecasted rainfall using spatial-scale decomposition method (SCDM) and evaluated the hydrological applicability with forecasted rainfall by KMA (MAPLE, KONOS) in terms of urban flood forecasting. SCDM is to separate the small-scale field (convective cell) and large-scale field (straitform cell) from radar rainfield. And each separated field is forecasted by translation model and storm tracker nowcasting model for improvement of QPF accuracy. As the evaluated results of various QPF for three rainfall events in Seoul and Metropolitan area, proposed method showed better prediction accuracy than MAPLE and KONOS considering the simplicity of the methodology. In addition, this study assessed the urban hydrological applicability for Gangnam basin. As the results, KONOS simulated the peak of water depth more accurately than MAPLE and SCDM, however cannot simulated the timeseries pattern of water depth. In the case of SCDM, the quantitative error was larger than observed water depth, but the simulated pattern was similar to observation. The SCDM will be useful information for flood forecasting if quantitative accuracy is improved through the adjustment technique and blending with NWP.

Projecting the Potential Distribution of Abies koreana in Korea Under the Climate Change Based on RCP Scenarios (RCP 기후변화 시나리오에 따른 우리나라 구상나무 잠재 분포 변화 예측)

  • Koo, Kyung Ah;Kim, Jaeuk;Kong, Woo-seok;Jung, Huicheul;Kim, Geunhan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • 제19권6호
    • /
    • pp.19-30
    • /
    • 2016
  • The projection of climate-related range shift is critical information for conservation planning of Korean fir (Abies koreana E. H. Wilson). We first modeled the distribution of Korean fir under current climate condition using five single-model species distribution models (SDMs) and the pre-evaluation weighted ensemble method and then predicted the distributions under future climate conditions projected with HadGEM2-AO under four $CO_2$ emission scenarios, the Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.5. We also investigated the predictive uncertainty stemming from five individual algorithms and four $CO_2$ emission scenarios for better interpretation of SDM projections. Five individual algorithms were Generalized linear model (GLM), Generalized additive model (GAM), Multivariate adaptive regression splines (MARS), Generalized boosted model (GBM) and Random forest (RF). The results showed high variations of model performances among individual SDMs and the wide range of diverging predictions of future distributions of Korean fir in response to RCPs. The ensemble model presented the highest predictive accuracy (TSS = 0.97, AUC = 0.99) and predicted that the climate habitat suitability of Korean fir would increase under climate changes. Accordingly, the fir distribution could expand under future climate conditions. Increasing precipitation may account for increases in the distribution of Korean fir. Increasing precipitation compensates the negative effects of increasing temperature. However, the future distribution of Korean fir is also affected by other ecological processes, such as interactions with co-existing species, adaptation and dispersal limitation, and other environmental factors, such as extreme weather events and land-use changes. Therefore, we need further ecological research and to develop mechanistic and process-based distribution models for improving the predictive accuracy.

RBSP (Radiation Belt Storm Probes) Mission, Space weather and Science Topics

  • Lee, Jae-Jin;Kim, Kyung-Chan;Hwang, Jung-A;Kim, Yeon-Han;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제37권1호
    • /
    • pp.89.2-89.2
    • /
    • 2012
  • Radiation Belt, discovered by Van Allen in 1958, is a region energetic particles are trapped by the Earth's magnetic field. To measure charged particles and fields in the radiation belt, RBSP(Radiation Belt Storm Probes) mission will be launched in September 2012 by NASA. RBSP mission consists of two spacecraft having orbit from 600 km to 30,000 km and rotates the Earth twice a day. This mission is not designed just for scientific purpose but have operational function broadcasting real time data for space weather monitoring. As a program of KASI-NASA cooperation, KASI is constructing RBSP data receiving antenna that will be installed by April in Daejeon. With this antenna system, NASA can receive RBSP data for 24 hours and KASI also get space weather information to protect Korean GEO satellites. In this presentation, we will discuss how we use RBSP data for space weather forecasting. In addition, we will talk about science topics that can be achieved by RBSP mission. Especially we focus on the dusk-side electron precipitation that has been considered as a main mechanism of electron dropout events. We show the dusk-side precipitation is closely associated with radiation belt electron loss with NOAA-POES data, and why RBSP mission is important to understand radiation belt physics.

  • PDF

Quantitative characterization of historical drought events in Korea -focusing on outlier analysis of precipitation- (우리나라 과거 가뭄사상의 정량적 특성 분석 -강수량의 이상치 분석을 중심으로-)

  • Jang, Ho-Won;Cho, Hyeong-Won;Kim, Tae-Woong;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • 제49권2호
    • /
    • pp.145-153
    • /
    • 2016
  • Using monthly rainfalls, this study investigated outliers of annual and/or seasonal rainfall for quantitative assessment of historical droughts in Korea. Based on the analysis of annual rainfall, Icheon, Geochang, Jeongeup, Suncheon and Jangheung gaging stations were selected to represent the major river basins, because they had most frequent dry years. The overall results indicated that the years of 1988 and 1994 were the worst dry years. Although the 2001 drought was not severe, it resulted in typical agricultural drought damage mainly in Seomjin and Yeongsan river basin due to the lack of agricultural water. On the other hand, the droughts of 1981-1982 and 1994-1995 were long term nation wide droughts that lasted more than two years resulting in extensive drought damages to parts of the country.

Climate Change and Coping with Vulnerability of Agricultural Productivity (기후변화와 농업생산의 전망과 대책)

  • 윤성호;임정남;이정택;심교문;황규홍
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제3권4호
    • /
    • pp.220-237
    • /
    • 2001
  • Over the 20th century global temperature increase has been 0.6$^{\circ}C$. The globally averaged surface temperature is projected to increase by 1.4 to 5.8$^{\circ}C$ over the period 1990 to 2100. Nearly all land areas will have higher maximum temperature and minimum temperature, and fewer cold days and frost days. More intense precipitation events will take plate over many areas. Over most mid-latitude continental interiors will have increased summer continental drying and associated risk of drought. By 2100, if the annual surface temperature increase is 3.5$^{\circ}C$, we will have 15.9$^{\circ}C$ from 12.4$^{\circ}C$ at present. Also the annual precipitation will range 1,118-2,447 mm from 972-1,841 mm at present in Korea. Consequently the average crop periods for summer crops will be 250 days that prolonged 32 days than at present. In the case of gradual increase of global warming, an annual crop can be adapted to the changing climate through the selection of filial generations in breeding process. The perennial crops such as an apple should be shifted the chief producing place to northern or high latitude areas where below 13.5$^{\circ}C$ of the annual surface temperature. If global warming happens suddenly over the threshold atmospheric greenhouse gases, then all ecosystems will have tremendous disturbance. Agricultural land-use plan, which state that farmers decide what to plant, based on their climate-based advantages. Therefore, farmers will mitigate possible negative imparts associated with the climate change. The farmers will have application to use agricultural meteorological information system, and agricultural long-range weather forecast system for their agroecosystems management. The ideal types of crops under $CO_2$ increase and climate change conditions are considered that ecological characteristics need indispensable to accomplish the sustainable agriculture as the diversification of genetic resources from yield-oriented to biomass-oriented characteristics with higher potential of $CO_2$ absorption and primary production. In addition, a heat-and-cold tolerance, a pest resistance, an environmental adaptability, and production stability should be also incorporated collectively into integrated agroecosystem.

  • PDF

Assessment of merging weather radar precipitation data and ground precipitation data according to various interpolation method (보간법에 따른 기상레이더 강수자료와 지상 강수자료의 합성기법 평가)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • 제50권12호
    • /
    • pp.849-862
    • /
    • 2017
  • The increased frequency of meteorological disasters has been observed due to increased extreme events such as heavy rainfalls and flash floods. Numerous studies using high-resolution weather radar rainfall data have been carried out on the hydrological effects. In this study, a conditional merging technique is employed, which makes use of geostatistical methods to extract the optimal information from the observed data. In this context, three different techniques such as kriging, inverse distance weighting and spline interpolation methods are applied to conditionally merge radar and ground rainfall data. The results show that the estimated rainfall not only reproduce the spatial pattern of sub-hourly rainfall with a relatively small error, but also provide reliable temporal estimates of radar rainfall. The proposed modeling framework provides feasibility of using conditionally merged rainfall estimation at high spatio-temporal resolution in ungauged areas.

Analysis of Modified Distance-and-Elevation Ratio Method with Different Exponents of Distance and Elevation (거리와 고도의 지수를 구분한 수정거리고도비율법의 분석)

  • Yoo, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • 제48권5호
    • /
    • pp.357-365
    • /
    • 2015
  • Both exponents of distance and elevation into distance-and-elevation ratio method for estimating missing rainfall data are expressed as squares together but in this study the two exponents are differently separated and analyzed. We used 326 hourly rainfall events of precipitation data during 10 years of 2004 to 2013 observed at a base station of Pyeongchang and the five neighboring index stations-Bangrim, Suju, Cheongoksan, Jinbu, Yeongwol1-in Han River basin for a case study. As a result, exponent values of distance and elevation appropriate for a topography of the site appear as 3.7 and 0.57 respectively. The exponents of distance and elevation difference need to be applied according to topographical characteristics of site where estimating missing data or interpolation are required.