• Title/Summary/Keyword: precipitation distribution

Search Result 783, Processing Time 0.026 seconds

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF

A study on the variation of design flood due to climate change in the ungauged urban catchment (기후변화에 따른 미계측 도시유역의 확률홍수량 변화에 관한 연구)

  • Hwang, Jeongyoon;Ahn, Jeonghwan;Jeong, Changsam;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.395-404
    • /
    • 2018
  • This research evaluated the change in rainfall quantile during S1, S2, and S3 by using Representative Concentration Pathways (RCP) 4.5 climate scenario HadGEM3-RA Regional Climate Model (RCM) produced by downscaling and bias correlation compared to the past standard observation data S0. Also, the maximum flood peak volume and flood area were calculated by using the urban runoff model and the impact of climate change was analyzed in each period. For this purpose, Gumbel distribution was used as an appropriate model based on the method of maximum likelihood. As a result, in the case of the 10 year-frequency which is the design of most urban drainage facilities, the rainfall quantile is in increased about 10% if we assume 50 years from now with the $3^{rd}$ quarter value and about 20% if we assume 70 years from now. This result implies that the installed urban drainage facility based on the currently set design flood volume cannot be met the design criteria in the future. Therefore, it is necessary to reflect future climate conditions to current urban drainage facilities.

Study on the Distribution Characteristics of Storm Damage Area : The Case of Gyeonggi-do (수해지 분포 특성에 관한 연구 : 경기도 사례를 중심으로)

  • Kang, Sangjun;Jung, Juchul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.507-517
    • /
    • 2012
  • The main purpose of this study is to address flooding resilient land use management strategy based on the distributional characteristics of storm damage areas in Gyeonggi-do. The employed methods are 1) Exploratory Spatial Data Analysis (ESDA) to understand the spatial patterns of storm damage areas occurred from 2005 to 2009, 2) Local Indicator of Spatial Association (LISA) to examine spatial autocorrelation existed in storm damage areas for the year of 2009. The results show that 1) crop land damage is very sensitive to heavy precipitation, 2) damaged buildings are found in all over the Gyeonggi areas, but relatively more damages are in the regions closed to the City of Seoul, 3) damaged roads-bridges, streams, and reaches are found in mostly rural areas, 4) building and crop land damage occurs mostly in lowlands with different spatial patterns. These findings imply that 1) it will be useful to consider the average distances and slopes of damaged building and crop lands from streams for the decision making of land use management strategy, 2) further management efforts are required in the north, east, and south regions of Gyeonggi areas to prevent roads-bridge, stream, and reach damages, 3) the present land use pattern needs to be carefully investigated by considering the damage clustered areas for the year of 2009 based on watershed and municipality boundaries.

Flocculation Kinetics Using Fe(III) Coagulant in Advanced Water Treatment: The Effect of Sulfate Ion (상수처리시 Fe(III) 응집제를 이용한 응집동력학에 관한 연구 : 황산이온의 영향)

  • 강임석;이병헌
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.367-377
    • /
    • 1995
  • The study of flocculation kinetics is of fundamental interest in the field of water treatment, because rational study of the factors affecting the coagulation process should be based on the rate of particle growth. The effect of sulfate on flocculation kinetics were examined using ferric nitrate as a coagulant to coagulate kaolin clay in water under several experimental conditions. Both the particle size distribution data obtained from the AIA and the on-line measurement of turbidity fluctuation by the PDA were used to measure flocculation kinetics. Results show that sulfate ion added to the kaolin suspension played an important role in the flocculation process, not only improving flocculation kinetics at more acidic pH levels but also changing surface charge of particles. The kinetics of flocculation were improved mainly by the enhanced rate and extent of Fe(III) precipitation attributed to the addition of sulfate, and thereby, better interparticle collision frequency, but little by the charge reductions resulting from the sulfate addition. The increase in sulfate concentration beyond $3\times10^{-4}M (up to 2\times10^{-3}M)$ did not induce further improvement in flocculation kinetics, although the higher concentrations of sulfate ion substantially increased the negative ZP value of particles. Key Words : Flocculation Kinetics, Fe(III) Coagulant, Sulfate ion, Turbidity Fluctuation.

  • PDF

Comparisons of Diversity and frequency of Ectomycorrhizal Fruiting Bodies by Cutting levels in Subtropical Forest Areas (난대지역 산림시업지 내의 벌채수준별 외생균근성 버섯 다양성 및 발생빈도 비교)

  • 오광인;조덕현;장석기;김종영
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.3
    • /
    • pp.34-45
    • /
    • 2002
  • This study was carried out to investigate the diversity and frequency of ectomycorrhizal fungi by cutting levels in Quercus acuta and Pinus densiflora stands from June to October, 2001. The obtained results from investigation were as follows, 1. The total of fungi found during the surveyed periods were 50 species, 30 genus, 15 families. The fungi belonged to Agaricales(37 species, 18 genus, 7 families), Aphllophorales(7 species, 6 genus, 3 families), Auriculariales(1 species, 1 genus, 1 families) and Gasteromycetes(5 species, 5 genus, 4 families), Basidiomycota. 2. The total number of putative ectomycorrhizal fruiting bodies were 137 individuals, 22 species, 10 genus, 5 families, 79 individuals, 10 species, 6 genus, 3 families at strip-cutting area of Pinus densiflora stand, 24 individuals, 9 species, 5 genus, 4 families at strip-cutting area of Quercus acuta stand and 25 individuals, 10 species, 4 genus, 3 families at spacing cutting area of Quercus acuta stand. 3. Tylropilus neofelleus had high host specificity associated with Chamaecyparis obtusa, while Amanita pseudoporphyria had relatively wide host ranges compared to other ectomycorrhizal fungi. 4. The results analyzed by Correlation coefficients showed that relative humidity and precipitation were major enviromental factors to affect the distribution of ectomycorrhizal fruiting bodies.

  • PDF

Streamflow Estimation using Coupled Stochastic and Neural Networks Model in the Parallel Reservoir Groups (추계학적모형과 신경망모형을 연계한 병렬저수지군의 유입량산정)

  • Kim, Sung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.195-209
    • /
    • 2003
  • Spatial-Stochastic Neural Networks Model(SSNNM) is used to estimate long-term streamflow in the parallel reservoir groups. SSNNM employs two kinds of backpropagation algorithms, based on LMBP and BFGS-QNBP separately. SSNNM has three layers, input, hidden, and output layer, in the structure and network configuration consists of 8-8-2 nodes one by one. Nodes in input layer are composed of streamflow, precipitation, pan evaporation, and temperature with the monthly average values collected from Andong and Imha reservoir. But some temporal differences apparently exist in their time series. For the SSNNM training procedure, the training sets in input layer are generated by the PARMA(1,1) stochastic model and they covers insufficient time series. Generated data series are used to train SSNNM and the model parameters, optimal connection weights and biases, are estimated during training procedure. They are applied to evaluate model validation using observed data sets. In this study, the new approaches give outstanding results by the comparison of statistical analysis and hydrographs in the model validation. SSNNM will help to manage and control water distribution and give basic data to develop long-term coupled operation system in parallel reservoir groups of the Upper Nakdong River.

Radar Rainfall Estimation Using Window Probability Matching Method : 1. Establishment of Ze-R Relationship for Kwanak Mt, DWSR-88C at Summer, 1998 (WPMM 방법을 이용한 레이더 강수량 추정 : 1. 1998년 여름철 관악산 DWSR-88C를 위한 Ze-R 관계식 산출)

  • Kim, Hyo-Gyeong;Lee, Dong-In;Yu, Cheol-Hwan;Gwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.25-36
    • /
    • 2002
  • Window Probability Matching Method(WPMM) is achieved by matching identical probability density of rain intensities and radar reflectivities taken only from small window centered about the gage. The equation of $Z_{e}-R$ relationship is obtained and compared with data between a DWSR-88C radar and high density rain gage networks within 150km from radar site in summer season, 1998. The probability density of radar effective reflectivity is distributed with high frequency near 15dBZ. The frequency distribution of rain intensities shows that rain intensity is lower than 10mm/hr in most part of radar coverage area. As the result of $Z_{e}-R$ relationship using WPMM, curved line has shown to the log scale spatially and it can be explained more flexible than any straight-line power laws at the transformation to the rainfall amount from $Z_e$ value. During 3 months, total radar cumulative rainfall amount estimated by $Z=200R^{1.6}$ and WPMM relationships are 44 and 80 percentages of total raingage amount, respectively. Therefore, $Z_{e}-R$ relationships by WPMM may be widely needed a statistical method for the computation of accumulated precipitation.

Estimation and Assessment of Future Design Rainfall from Non-stationary Rainfall Frequency Analysis using Separation Method (호우분리기법을 적용한 비정상성 빈도해석의 미래확률강우량 산정 및 평가)

  • Son, Chan-Young;Lee, Bo-Ram;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.451-461
    • /
    • 2015
  • This study aimed to estimate the future design rainfall through a non-stationary frequency analysis using the rainfall separation technique. First, we classified rainfall in the Korean Peninsula into local downpour and TC-induced rainfall through rainfall separation technique based on the path and size of a typhoon. Furthermore, we performed the analysis of regional rainfall characteristics and trends. In addition, we estimated the future design rainfall through a non-stationary frequency analysis using Gumbel distribution and carried out its quantitative comparison and evaluation. The results of the analysis suggest that the increase and decrease rate of rainfall in the Korean Peninsula were different and the increasing and decreasing tendencies were mutually contradictory at some points. In addition, a non-stationary frequency analysis was carried out by using the rainfall separation technique. The outcome of this analysis suggests that a relatively reasonable future design rainfall can be estimated. Comparing total rainfall with the future design rainfall, differences were found in the southern and eastern regions of the Korean peninsula. This means that climate change may have a different effect on the typhoon and local downpour. Thus, in the future, individual assessment of climate change impacts needs to be done through moisture separation. The results presented here are applicable in future hydraulic structures design, flood control measures related to climate change, and policy establishment.

Effect of Polymer Structure on Membrane Morphology by Addition of 2-butoxyethanol (2-butoxyethanol 첨가에 따른 고분자 구조가 분리막 구조에 미치는 영향)

  • Son, Ye-Ji;Kim, No-Won
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.377-388
    • /
    • 2011
  • Flat sheet microfiltration membranes were prepared with polysulfone (PSF), polyethersulfone (PES), and polyphenylsulfone (PPS) by an immersion precipitation phase inversion method. In this method, dimethyl formamide (DMF) and polyvinylpyrrolidone (PVP) were used as a solvent and a wetting polymer additive, respectively. 2-butoxyethanol (BE) was used as a nonsolvent additive catalyst to form pore. The morphology of membranes was investigated by scanning electron microscopy and micropermporometer. The permeability of the membranes was evaluated with the flux of pure water. When the BE was added, the pore size of membranes became larger than blank membranes. The changes in the morphology of membrane due to the BE addition depend on polymer structure. All membranes have similar mean pore size and porosity. The mean pore sizes of PSF, PES, and PPS membranes were 0.282, 0.330 $0.308{\mu}m$, respectively. The porosities of PSF, PES and PPS membranes were 68.5, 66.1, 66.4%, respectively. However, the PPS membrane showed higher pore density on surface and narrower pore size distribution than PSF or PES membrane does. As a result, the pure water flux of PPS membrane ($357L/m^2\;hr$) was higher than that of PSF ($196L/m^2\;hr$) or PES membrane ($214L/m^2\;hr$).

Adsorption Characteristics of Copper Ion onto a Bentonite (벤토나이트에 의한 구리이온의 흡착특성)

  • Goh, E.O.;Lee, J.O.;Cho, W.J.;Hyun, J.H.;Kang, C.H.;Chun, K.S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.83-89
    • /
    • 2000
  • Bentonite has been considered as a liner material to restrict the release of hazardous heavy metals from the landfill. The adsorption of copper onto a domestic bentonite was studied to provide the adsorption isotherm and the effect of solution chemistry and temperature. The copper adsorption was fitted well to a Freundlich isotherm, in which Freundlich constants and correlation coefficient were calculated to be $K_F=1.18$, n=1.65, and $r^2=0.97$, respectively. The distribution coefficients ($K_d$) for the adsorption of copper decreased with increasing initial copper concentration. The $K_d$ increased with increasing the pH of solution, and drastically increased at pH > 5.3 because of precipitation of most copper species. As the ion strength of $Na^+$ in solution increased the $K_d$ decreased, while it increased with increasing the concentration of $SO_4{^{2-}}$ in solution. An increase in the temperature of experimental solution decreased the $K_d$ values.

  • PDF