This study is an effort to develop a stochastic model of precipitation series that preserves the pattern of occurrence of precipitation events throughout the year as well as several characteristics of the duration, amount, and intensity of precipitation events. In this study an event cluster model is used to describe the occurrence of precipitation events. A logarithmic negative mixture distribution is used to describe event duration and separation. The number of events within each cluster is also described by the Poisson cluster process. The duration of each event within a cluster and the separation of events within a single cluster are described by a logarithmic negative mixture distribution. The stochastic model for hourly precipitation occurrence process is fitted to historical precipitation data by estimating the model parameters. To allow for seasonal variations in the precipitation process, the model parameters are estimated separately for each month. an analysis of thirty-four years of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many features of historical precipitation. The seasonal variations in number of precipitation events in each month for the historical and simulated data are also approximately identical. The marginal distributions for event characteristics for the historical and simulated data were similar. The conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.
This study defines non-precipitation information as areas with weak precipitation or cloud particles that radar cannot detect due to weak returned signals, and suggests methods for its utilization in data assimilation. Previous studies have demonstrated that assimilating radar data from precipitation echoes can produce precipitation in model analysis and improve subsequent precipitation forecast. However, this study also recognizes the non-precipitation information as valuable observation and seeks to assimilate it to suppress spurious precipitation in the model analysis and forecast. To incorporate non-precipitation information into data assimilation, we propose observation operators that convert radar non-precipitation information into hydrometeor mixing ratios and relative humidity for the Weather Research and Forecasting Data Assimilation system (WRFDA). We also suggest a preprocessing method for radar non-precipitation information. A single-observation experiment indicates that assimilating non-precipitation information fosters an environment conducive to inhibiting convection by lowering temperature and humidity. Subsequently, we investigate the impact of assimilating non-precipitation information to a real case on July 23, 2013, by performing a subsequent 9-hour forecast. The experiment that assimilates radar non-precipitation information improves the model's precipitation forecasts by showing an increase in the Fractional Skill Score (FSS) and a decrease in the False Alarm Ratio (FAR) compared to experiments in which do not assimilate non-precipitation information.
Journal of the Korean Data and Information Science Society
/
v.28
no.1
/
pp.39-47
/
2017
Precipitation is an important component for hydrological and water control study. In general, AWS data provides more accurate but low dense information for precipitation while radar data gives less accurate but high dense information. The objective of this study is to construct adjusted precipitation field based on hierarchical spatial model combining radar data and AWS data. Here, we consider a Bayesian hierarchical model with spatial structure for hourly accumulated precipitation. In addition, we also consider a redistribution of hourly precipitation to 2.5 minute precipitation. Through real data analysis, it has been shown that the proposed approach provides more reasonable precipitation field.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.132-132
/
2021
Access to accurate spatial precipitation in many hydrological studies is necessary. Existence of many mountains with diverse topography in South Korea causes different spatial distribution of precipitation. Rain gauge stations show accurate precipitation information in points, but due to the limited use of rain gauge stations and the difficulty of accessing them, there is not enough accurate information in the whole area. Weather radars can provide an integrated precipitation information spatially. Despite this, weather radar data have some errors that can not provide accurate data, especially in heavy rainfall. In this study, some location-based variable like aspect, elevation, plan curvature, profile curvature, slope and distance from the sea which has most effect on rainfall was considered. Then Automatic Weather Station data was used for spatial training of variables in each event. According to this, K-fold cross-validation method was combined with Adaptive Neuro-Fuzzy Inference System. Based on this, 80% of Automatic Weather Station data was used for training and validation of model and 20% was used for testing and evaluation of model. Finally, spatial distribution of precipitation for 1×1 km resolution in Gwangdeoksan radar station was estimates. The results showed a significant decrease in RMSE and an increase in correlation with the observed amount of precipitation.
The purpose of this study is to investigate the characteristic changes of the Changma season in the 2000s. To accomplish this goal, we have used daily rainfall data collected over nearly 40 years (1971 to 2010). The average summer precipitation data including the Changma season were collected from 16 weather stations that are placed across the three major regions (i.e. central region, southern region, and Jeju region) as Korea Meteorological Administration divided. These precipitation data were analyzed to find out characteristic changes of the Changma season. Results of the precipitation data comparison among the major regions that, monthly average precipitation in the central region was the highest in July; its precipitation tended to increase from May to September. In the southern region, the precipitation amount was lowest in June and tended to increase in May, September, and August. In the Jeju region, the precipitation has been the highest in June and July for the past 30 years, whereas September has been highest month in the last 10 years. The precipitation amount in the Jeju region decreased both in June and July, whereas it tended to grow in May, August and September. A correlation coefficient formula by Karl Pearson has been used to find out correlations between the Changma season and the precipitation of the major regions in 2000s and normal years. It was found that the correlation coefficient has decreased from 0.723 to 0.524 in the 2000s (2001 to 2010) compared to normal years (1971 to 2000).
The Transactions of The Korean Institute of Electrical Engineers
/
v.64
no.9
/
pp.1337-1346
/
2015
In this paper, pattern classifier is designed to classify precipitation and non-precipitation events from weather radar data. The proposed classifier is based on Fuzzy Neural Network(FNN) and consists of three FNNs which operate in parallel. In the proposed network, the connection weights of the consequent part of fuzzy rules are expressed as two polynomial types such as constant or linear polynomial function, and their coefficients are learned by using Least Square Estimation(LSE). In addition, parametric as well as structural factors of the proposed classifier are optimized through Differential Evolution(DE) algorithm. After event classification between precipitation and non-precipitation echo, non-precipitation event is to get rid of all echo, while precipitation event including non-precipitation echo is to get rid of non-precipitation echo by classifier that is also based on Fuzzy Neural Network. Weather radar data obtained from meteorological office is to analysis and discuss performance of the proposed event and echo patter classifier, result of echo pattern classifier compare to QC(Quality Control) data obtained from meteorological office.
Three free parameters included in a cumulus parameterization are optimized by using micro-genetic algorithm for three precipitation cases occurred in the Korea Peninsula during the summer season in order to reduce biases in a regional model associated with the uncertainties of the parameters and thus to improve the predictability of precipitation. The first parameter is the one that determines the threshold in convective trigger condition. The second parameter is the one that determines boundary layer forcing in convective closure. Finally, the third parameter is the one used in calculating conversion parameter determining the fraction of condensate converted to convective precipitation. Optimized parameters reduce the occurrence of convections by suppressing the trigger of convection. The reduced convection occurrence decreases light precipitation but increases heavy precipitation. The sensitivity experiments are conducted to examine the effects of the optimized parameters on the predictability of precipitation. The predictability of precipitation is the best when the three optimized parameters are applied to the parameterization at the same time. The first parameter most dominantly affects the predictability of precipitation. Short-range forecasts for July 2018 are also conducted to statistically assess the precipitation predictability. It is found that the predictability of precipitation is consistently improved with the optimized parameters.
Imgook Jung;Sungwon Choi;Daeseong Jung;Jongho Woo;Suyoung Sim;Kyung-Soo Han
Korean Journal of Remote Sensing
/
v.40
no.3
/
pp.269-274
/
2024
High-quality precipitation data are crucial for various industries, including disaster prevention. In South Korea, long-term high-quality data are collected through numerous ground observation stations. However, data between these stations are reprocessed into a grid format using interpolation methods, which may not perfectly match actual precipitation. A prime example of real-time observational grid data globally is the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM IMERG) from National Aeronautics and Space Administration (NASA), while in South Korea, ground radar data are more commonly used. GPM and ground radar data exhibit distinct differences due to their respective processing methods. This study aims to analyze the characteristics of GPM and Constant Altitude Plan Position Indicator(CAPPI),representative real-time grid data, by comparing them with ground-observed precipitation data. The study period spans from 2021 to 2022, focusing on hourly data from Automated Synoptic Observing System (ASOS) sites in South Korea. The GPM data tend to underestimate precipitation compared to ASOS data, while CAPPI shows errors in estimating low precipitation amounts. Through this comparative analysis, the study anticipates identifying key considerations for utilizing these data in various applied fields, such as recalculating design rainfall, thereby aiding researchers in improving prediction accuracy by using appropriate data.
The objective of this study is to develop computer simulation model that produces precipitation patterns from stochastic model. The hourly precipitation process consists of the precipitation occurrence and precipitation amounts. In this study, an event cluster model developed by Lee and Lee(2002) is used to describe the occurrence process of events, and the hourly precipitation amounts within each event is described by a nonstationary form of a first-order autoregressive process. The complete stochastic model for hourly precipitation is fitted to historical precipitation data by estimating the model parameters. An analysis of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many of the features of historical precipitation. The autocorrelation coefficients of the historical and simulated data are nearly identical except for lags more than about 3 hours. The precipitation intensity, duration, marginal distributions, and conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1427-1430
/
2009
The amount and the continuity of the precipitation data used in a hydrological analysis may exert a big influence on the reliability of the analysis. It is a fundamental process to estimate the missing data caused by such as a breakdown of the rainfall recording machine or to expand a short period of rainfall data. In this study the eight methods widely used as methods for estimating are compared. The data used in this research is the annual precipitation amount during 17 years at the Cheolwon station including an ungauged period of 15 years and its five surrounding stations. By use of this certified method the ungauged precipitation values at the Cheolweon station is estimated and the areal average of annual precipitation for 32 years at the Han River basin is calculated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.