• Title/Summary/Keyword: precipitation data

Search Result 1,971, Processing Time 0.026 seconds

A Stochastic Model for Precipitation Occurrence Process of Hourly Precipitation Series (시간강수계열의 강수발생과정에 대한 추계학적 모형)

  • Lee, Jae-Jun;Lee, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.109-124
    • /
    • 2002
  • This study is an effort to develop a stochastic model of precipitation series that preserves the pattern of occurrence of precipitation events throughout the year as well as several characteristics of the duration, amount, and intensity of precipitation events. In this study an event cluster model is used to describe the occurrence of precipitation events. A logarithmic negative mixture distribution is used to describe event duration and separation. The number of events within each cluster is also described by the Poisson cluster process. The duration of each event within a cluster and the separation of events within a single cluster are described by a logarithmic negative mixture distribution. The stochastic model for hourly precipitation occurrence process is fitted to historical precipitation data by estimating the model parameters. To allow for seasonal variations in the precipitation process, the model parameters are estimated separately for each month. an analysis of thirty-four years of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many features of historical precipitation. The seasonal variations in number of precipitation events in each month for the historical and simulated data are also approximately identical. The marginal distributions for event characteristics for the historical and simulated data were similar. The conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.

Data Assimilation of Radar Non-precipitation Information for Quantitative Precipitation Forecasting (정량적 강수 예측을 위한 레이더 비강수 정보의 자료동화)

  • Yu-Shin Kim;Ki-Hong Min
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.557-577
    • /
    • 2023
  • This study defines non-precipitation information as areas with weak precipitation or cloud particles that radar cannot detect due to weak returned signals, and suggests methods for its utilization in data assimilation. Previous studies have demonstrated that assimilating radar data from precipitation echoes can produce precipitation in model analysis and improve subsequent precipitation forecast. However, this study also recognizes the non-precipitation information as valuable observation and seeks to assimilate it to suppress spurious precipitation in the model analysis and forecast. To incorporate non-precipitation information into data assimilation, we propose observation operators that convert radar non-precipitation information into hydrometeor mixing ratios and relative humidity for the Weather Research and Forecasting Data Assimilation system (WRFDA). We also suggest a preprocessing method for radar non-precipitation information. A single-observation experiment indicates that assimilating non-precipitation information fosters an environment conducive to inhibiting convection by lowering temperature and humidity. Subsequently, we investigate the impact of assimilating non-precipitation information to a real case on July 23, 2013, by performing a subsequent 9-hour forecast. The experiment that assimilates radar non-precipitation information improves the model's precipitation forecasts by showing an increase in the Fractional Skill Score (FSS) and a decrease in the False Alarm Ratio (FAR) compared to experiments in which do not assimilate non-precipitation information.

A spatiotemporal adjustment of precipitation using radar data and AWS data (레이더와 지상관측소 강우자료를 이용한 시공간 강우 조정 모형)

  • Shin, Tae Sung;Lee, Gyuwon;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • Precipitation is an important component for hydrological and water control study. In general, AWS data provides more accurate but low dense information for precipitation while radar data gives less accurate but high dense information. The objective of this study is to construct adjusted precipitation field based on hierarchical spatial model combining radar data and AWS data. Here, we consider a Bayesian hierarchical model with spatial structure for hourly accumulated precipitation. In addition, we also consider a redistribution of hourly precipitation to 2.5 minute precipitation. Through real data analysis, it has been shown that the proposed approach provides more reasonable precipitation field.

Estimation of spatial distribution of precipitation by using of dual polarization weather radar data

  • Oliaye, Alireza;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.132-132
    • /
    • 2021
  • Access to accurate spatial precipitation in many hydrological studies is necessary. Existence of many mountains with diverse topography in South Korea causes different spatial distribution of precipitation. Rain gauge stations show accurate precipitation information in points, but due to the limited use of rain gauge stations and the difficulty of accessing them, there is not enough accurate information in the whole area. Weather radars can provide an integrated precipitation information spatially. Despite this, weather radar data have some errors that can not provide accurate data, especially in heavy rainfall. In this study, some location-based variable like aspect, elevation, plan curvature, profile curvature, slope and distance from the sea which has most effect on rainfall was considered. Then Automatic Weather Station data was used for spatial training of variables in each event. According to this, K-fold cross-validation method was combined with Adaptive Neuro-Fuzzy Inference System. Based on this, 80% of Automatic Weather Station data was used for training and validation of model and 20% was used for testing and evaluation of model. Finally, spatial distribution of precipitation for 1×1 km resolution in Gwangdeoksan radar station was estimates. The results showed a significant decrease in RMSE and an increase in correlation with the observed amount of precipitation.

  • PDF

Characteristic Changes of the Changma Season in the 2000s

  • Lee, Jun-Youb;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.33 no.5
    • /
    • pp.422-433
    • /
    • 2012
  • The purpose of this study is to investigate the characteristic changes of the Changma season in the 2000s. To accomplish this goal, we have used daily rainfall data collected over nearly 40 years (1971 to 2010). The average summer precipitation data including the Changma season were collected from 16 weather stations that are placed across the three major regions (i.e. central region, southern region, and Jeju region) as Korea Meteorological Administration divided. These precipitation data were analyzed to find out characteristic changes of the Changma season. Results of the precipitation data comparison among the major regions that, monthly average precipitation in the central region was the highest in July; its precipitation tended to increase from May to September. In the southern region, the precipitation amount was lowest in June and tended to increase in May, September, and August. In the Jeju region, the precipitation has been the highest in June and July for the past 30 years, whereas September has been highest month in the last 10 years. The precipitation amount in the Jeju region decreased both in June and July, whereas it tended to grow in May, August and September. A correlation coefficient formula by Karl Pearson has been used to find out correlations between the Changma season and the precipitation of the major regions in 2000s and normal years. It was found that the correlation coefficient has decreased from 0.723 to 0.524 in the 2000s (2001 to 2010) compared to normal years (1971 to 2000).

Design of Optimized Pattern Classifier for Discrimination of Precipitation and Non-precipitation Event (강수 및 비 강수 사례 판별을 위한 최적화된 패턴 분류기 설계)

  • Song, Chan-Seok;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1337-1346
    • /
    • 2015
  • In this paper, pattern classifier is designed to classify precipitation and non-precipitation events from weather radar data. The proposed classifier is based on Fuzzy Neural Network(FNN) and consists of three FNNs which operate in parallel. In the proposed network, the connection weights of the consequent part of fuzzy rules are expressed as two polynomial types such as constant or linear polynomial function, and their coefficients are learned by using Least Square Estimation(LSE). In addition, parametric as well as structural factors of the proposed classifier are optimized through Differential Evolution(DE) algorithm. After event classification between precipitation and non-precipitation echo, non-precipitation event is to get rid of all echo, while precipitation event including non-precipitation echo is to get rid of non-precipitation echo by classifier that is also based on Fuzzy Neural Network. Weather radar data obtained from meteorological office is to analysis and discuss performance of the proposed event and echo patter classifier, result of echo pattern classifier compare to QC(Quality Control) data obtained from meteorological office.

The Improvement of Summer Season Precipitation Predictability by Optimizing the Parameters in Cumulus Parameterization Using Micro-Genetic Algorithm (마이크로 유전알고리즘을 이용한 적운물리과정 모수 최적화에 따른 여름철 강수예측성능 개선)

  • Jang, Ji-Yeon;Lee, Yong Hee;Choi, Hyun-Joo
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.335-346
    • /
    • 2020
  • Three free parameters included in a cumulus parameterization are optimized by using micro-genetic algorithm for three precipitation cases occurred in the Korea Peninsula during the summer season in order to reduce biases in a regional model associated with the uncertainties of the parameters and thus to improve the predictability of precipitation. The first parameter is the one that determines the threshold in convective trigger condition. The second parameter is the one that determines boundary layer forcing in convective closure. Finally, the third parameter is the one used in calculating conversion parameter determining the fraction of condensate converted to convective precipitation. Optimized parameters reduce the occurrence of convections by suppressing the trigger of convection. The reduced convection occurrence decreases light precipitation but increases heavy precipitation. The sensitivity experiments are conducted to examine the effects of the optimized parameters on the predictability of precipitation. The predictability of precipitation is the best when the three optimized parameters are applied to the parameterization at the same time. The first parameter most dominantly affects the predictability of precipitation. Short-range forecasts for July 2018 are also conducted to statistically assess the precipitation predictability. It is found that the predictability of precipitation is consistently improved with the optimized parameters.

Accuracy Assessment of Precipitation Products from GPM IMERG and CAPPI Ground Radar over South Korea

  • Imgook Jung;Sungwon Choi;Daeseong Jung;Jongho Woo;Suyoung Sim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.269-274
    • /
    • 2024
  • High-quality precipitation data are crucial for various industries, including disaster prevention. In South Korea, long-term high-quality data are collected through numerous ground observation stations. However, data between these stations are reprocessed into a grid format using interpolation methods, which may not perfectly match actual precipitation. A prime example of real-time observational grid data globally is the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM IMERG) from National Aeronautics and Space Administration (NASA), while in South Korea, ground radar data are more commonly used. GPM and ground radar data exhibit distinct differences due to their respective processing methods. This study aims to analyze the characteristics of GPM and Constant Altitude Plan Position Indicator(CAPPI),representative real-time grid data, by comparing them with ground-observed precipitation data. The study period spans from 2021 to 2022, focusing on hourly data from Automated Synoptic Observing System (ASOS) sites in South Korea. The GPM data tend to underestimate precipitation compared to ASOS data, while CAPPI shows errors in estimating low precipitation amounts. Through this comparative analysis, the study anticipates identifying key considerations for utilizing these data in various applied fields, such as recalculating design rainfall, thereby aiding researchers in improving prediction accuracy by using appropriate data.

A Stochastic Simulation Model for the Precipitation Amounts of Hourly Precipitation Series (시간강수계열의 강수량 모의발생을 위한 추계학적 모형)

  • Lee, Jung-Sik;Lee, Jae-joon;Park, Jong-Young
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.763-777
    • /
    • 2002
  • The objective of this study is to develop computer simulation model that produces precipitation patterns from stochastic model. The hourly precipitation process consists of the precipitation occurrence and precipitation amounts. In this study, an event cluster model developed by Lee and Lee(2002) is used to describe the occurrence process of events, and the hourly precipitation amounts within each event is described by a nonstationary form of a first-order autoregressive process. The complete stochastic model for hourly precipitation is fitted to historical precipitation data by estimating the model parameters. An analysis of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many of the features of historical precipitation. The autocorrelation coefficients of the historical and simulated data are nearly identical except for lags more than about 3 hours. The precipitation intensity, duration, marginal distributions, and conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.

A Comparison of the Methods for Estimating the Missing Precipitation Values Ungauged (미계측 결측 강수자료 보완 방법의 비교)

  • Yoo, Ju-Hwan;Choi, Yong-Joon;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1427-1430
    • /
    • 2009
  • The amount and the continuity of the precipitation data used in a hydrological analysis may exert a big influence on the reliability of the analysis. It is a fundamental process to estimate the missing data caused by such as a breakdown of the rainfall recording machine or to expand a short period of rainfall data. In this study the eight methods widely used as methods for estimating are compared. The data used in this research is the annual precipitation amount during 17 years at the Cheolwon station including an ungauged period of 15 years and its five surrounding stations. By use of this certified method the ungauged precipitation values at the Cheolweon station is estimated and the areal average of annual precipitation for 32 years at the Han River basin is calculated.

  • PDF