• Title/Summary/Keyword: precast wall

Search Result 143, Processing Time 0.027 seconds

Test on the anchoring components of steel shear keys in precast shear walls

  • Shen, Shao-Dong;Pan, Peng;Li, Wen-Feng;Miao, Qi-Song;Gong, Run-Hua
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.783-791
    • /
    • 2019
  • Prefabricated reinforced-concrete shear walls are used extensively in building structures because they are convenient to construct and environmentally sustainable. To make large walls easier to transport, they are divided into smaller segments and then assembled at the construction site using a variety of connection methods. The present paper proposes a precast shear wall assembled using steel shear keys, wherein the shear keys are fixed on the embedded steel plates of adjacent wall segments by combined plug and fillet welding. The anchoring strength of shear keys is known to affect the mechanical properties of the wall segments. Loading tests were therefore performed to observe the behavior of precast shear wall specimens with different anchoring components for shear keys. The specimen with insufficient strength of anchoring components was found to have reduced stiffness and lateral resistance. Conversely, an extremely high anchoring strength led to a short-column effect at the base of the wall segments and low deformation ability. Finally, for practical engineering purposes, a design approach involving the safety coefficient of anchoring components for steel shear keys is suggested.

Snap back testing of unbonded post-tensioned concrete wall systems

  • Twigden, Kimberley M.;Henry, Richard S.
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.209-219
    • /
    • 2019
  • Unbonded Post-Tensioned (UPT) precast concrete systems have been shown to provide excellent seismic resistance. In order to improve understanding of the dynamic response of UPT systems, a series of snap back tests on four UPT systems was undertaken consisting of one Single Rocking Wall (SRW) and three Precast Wall with End Columns (PreWEC) systems. The snap back tests provided both a static pushover and a nonlinear free vibration response of a system. As expected the SRW exhibited an approximate bi-linear inertia force-drift response during the free vibration decay and the PreWEC walls showed an inertia force-drift response with increased strength and energy dissipation due to the addition of steel O-connectors. All walls exhibited negligible residual drifts regardless of the number of O-connectors or the post-tensioning force. When PreWEC systems of the same strength were compared the inclusion of further energy dissipating O-connectors was found to decrease the measured peak wall acceleration. Both the local and global wall parameters measured at pseudo-static and dynamic loading rates showed similar behaviour, which demonstrates that the dynamic behaviour of UPT walls is well represented by pseudo-static tests. The SRW was found to have Equivalent Viscous Damping (EVD) between 0.9-3.8% and the three PreWEC walls were found to have maximum EVD of between 14.7-25.8%.

Development and Shear Performance Evaluation of Vertical Joints between Precast Concrete Walls (PC 벽체 수직접합부의 개발 및 전단성능 평가)

  • Moon, Kyo Young;Kim, Sung Jig;Lee, Kihak;Kim, Yong Nam
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.81-88
    • /
    • 2022
  • The paper introduces an experimental program for the newly developed vertical joints between Precast Concrete (PC) walls to improve their in-plane shear capacity. Compared to the existing vertical joints, two types of vertical joints were developed by increasing the transverse reinforcement ratio and improving frictional force at the joint interface. A total of four specimens including the Reinforced Concrete (RC) wall and PC walls with developed vertical joints were designed and constructed. The constructed specimens were experimentally investigated through monotonic shear tests. The observed damage, load-deformation relationship, strain and strength are investigated and compared with the cases of RC wall specimen. Experimental results indicate that the maximum force and initial stiffness of the PC wall with proposed vertical joints were decreased by comparing with those of RC wall. However, the ultimate displacement increased by up to 217.30% compared to the RC wall specimen. In addition, brittle failure did not occurred and relatively few cracks and damages occurred.

An Experimental Study on Structural Behavior of Half Slab Reinforced by Truss Mesh (트러서메쉬 보강 하프 슬래브의 구조적 거동에 관한 실험적 연구)

  • Ko, Man-Young;Kim, Yong-Boo;Park, Hyun-Soo;Chung, Lan
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.119-128
    • /
    • 1995
  • This paper summarizes experimental results for studying feasibility and structural behavior of' a half slab which is getting popularity in recent building construction in favour of the savings in manpower, coats, and construction period. 17 specimens were tested to investigate and analyze the flexural strength of precast concrete slab, half slab, and half slab-wall joint. The primary variables of the testing program were: thickness of precast concrete slab, truss mesh shape, and type of loadings. Test results show that the flexural strength of precast concrete slab in reverse loading is lower than the design strength, but the flexural strength of precast concrete slab, half slab and half slab-wall joint in direct loading is higher than the design srength. No horizontal cracks were found in the connection between insitu concrete and precast concrete slab. The flexural strength of half slab and half slab-wall joint was the same as that of reinforced concrete members. This study concludes that there will not be any structural problem in using a half slab reinforced by truss mesh if props spacing of 2.0m-2.5m, cleanness, and rough finishing between precast concrete and insitu concrete slab are kept.

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

Seismic Performance of Precast Concrete Bearing Walls with Hollow Core (유공 PC 벽체의 내진 거동에 관한 연구)

  • 이리형;한상환;조순금;남기룡;최근도
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.425-430
    • /
    • 1996
  • The purpose of this study is to investigate the behavior of the bearing precast concrete (pc) wall structure with hollow core based on experimental tests. In order to evaluate the cyclic performance of the pc walls. Too one story pc walls and ond one reinforced concrete wall are made. The experimental results of pc walls were compared with those values of reinforced concrete (rc) wall. The structural behaviors of pc wall structure with hollow core are similar to those of reinforced concrete bearing wall structure. This study shows that the pc wall with hollow core could be treated as rc wall when designs the pc wall structure against lateral loads

  • PDF

Reinforcing Efficiency of Micro-Pile with Precast Retaining Wall (프리캐스트 옹벽 마이크로 파일의 보강 효율)

  • Moon, Changyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.61-71
    • /
    • 2008
  • This study investigates the lateral resistance of micro-pile system when surcharge load is acting on the back of retaining wall. Both laboratory experiments and numerical analysis were performed. The experimental retaining wall model was developed on the laboratory-sized foundation. While surcharge load was acting, the interval and length varied as experimental variables. From the investigation it is known that the micro-pile system can effectively control the lateral displacement which is developed on the precast retaining wall. The effectiveness became increased as the pile interval reduced and the length of pile increased. The greatest reinforcing efficiency was shown when the pile length was 0.5H and the interval was 7D.

  • PDF

Development of PC Double Wall for Staircase Construction (계단실 공사를 위한 PC Double Wall 공법 개발)

  • Suh, Jung-Il;Park, Hong-Gun;Hwang, Hyeon-Jong;Im, Ju-Hyuk;Kim, Yong-Nam
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.571-581
    • /
    • 2014
  • In the present study, hollow precast concrete wall (PC Double Wall) for staircase construction was developed. Comparing the conventional walls, the PC Double Wall can be reduced the lift weight using hollow core and improves the integrity between the PC members. The cross-section and re-bar details of the PC Double Wall were developed considering precast concrete manufacturing, constructability, and the structural safety. Particularly, a form system was developed to manufacture thin and hollow core PC wall efficiently. A mock-up test for a staircase using the PC Double wall was performed to verify the constructability and integrity of the PC walls. The test result verified that joint deformation and cracking did not occur as showing good constructability.

A Study On Structural Behavior of Anchor Pile Precast Retaining Wall with Screw Shape Flange (나선형 플렌지가 설치된 앵커파일 프리캐스트 옹벽의 구조적 거동에 관한 연구)

  • Choi, Seung-Seon;Ahn, Tae-Bong;Kim, Woo-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.129-138
    • /
    • 2013
  • In this study, Anchor Pile Precast Retaining Wall (APC) with screw shape flange was investigated and the results were arranged for designing APC specifications. Since precast materials require special care when they are manufactured, carried or treated, more accurate design and analysis of optimized dimension are needed : thus moment distribution of front foot was checked. Through full-scale field test, form and optimal stiffening shape were obtained and through fracture test with real load, applicable load was reasonably calculated. Research result in this thesis could be used as guideline or standard of designing and constructing Anchor Pile Precast Retaining Wall with screw shape flange.

Evaluation of Drainage Capacity of Precast Concrete-panel Retaining Wall Attached to In-situ Ground Using Numerical Analysis (수치해석을 이용한 원지반 부착식 판넬옹벽의 투수성 평가)

  • Kwon, Youg Kyu;Lee, Jae Won;Hwang, Young-cheol;Ban, Hoki;Lee, Minjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • On the construction of new roads, the cut slope is inevitable and thus has been widely applied in the mountainous area. Particularly, the retaining wall with the precast concrete panel is often selected for its higher stability and mostly constructed in bottom-up method. However, the bottom-up method results in steeper slope as 1:0.05 before constructiong retaining wall and thus causes poor compaction at backfill which may induce instability during or after the construction. To overcome this problem, precast concrete panel retaining wall was attached in-situ ground (so called top-down). This paper presents the evaluation of drainage capacity of top-down method which has impermeable layer between panel and mortar being used to increase the ability of attachment of the precast concrete panel.