• Title/Summary/Keyword: precast member

Search Result 94, Processing Time 0.03 seconds

Analytical Study on Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.178-181
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

  • PDF

Estimation of production length of PC beam by using splice length of bottom rebar (하부철근 이음길이에 따른 PC 보 제작 길이 산정)

  • Sung, Soojin;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.84-85
    • /
    • 2014
  • Green frame is column-beam structure composed of precast concrete members. Based on Revision of Structural Concrete Design Code, the bottom rebar of beam shall be extend at least 150mm into the support member. However, if the bottom rebar extend to satisfy Revision of Structural Concrete Design Code, the installation fo beam is impossible due to interference between the columns and beams. Thus, the aim of this study is estimation of production length of precast concrete beam by using splice length of bottom rebar. In this study to solve this problem, lap splice were used on the join. This study was calculated length of the reinforcement by the diameter. According to the length of the rebar, the production length of beam concrete was calculated. The results of this study will satisfy the Revision of Structural Concrete Design Code about column-beam connection when green frame will be applied.

  • PDF

Spliced Two Span Bridge with the U-Type Precast Girders by Using the Secondary Moment (2차 모멘트를 이용한 U형 프리캐스트 거더의 연속화)

  • 이환우;조은래;김광양
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.193-200
    • /
    • 1998
  • The precast prestressed concrete girders of I-type section are frequently employed to design the short-to-medium span bridge. However, its beam depth is greatly increased as its span length is increased over than about 30m. Therefore, the economic and aesthetic effectiveness are rapidly decreased in case of the span length over 30m. The purpose of this paper is to verify the structural safety on the new spliced two span bridge and analyze the variation of member forces and stress distribution according to the construction stages and time. The new spliced technique is performed by partial post tensioning and release in the U-type girders. The structural characteristics of this technique is the introduction of secondary moment to reduce the bending moment by self weight of precast U-type girders constructed in simply supported beam type. So, it is expected that the structural efficiency of this spliced bridge may be improved more than other techniques.

  • PDF

An Analysis of Influence Factors on Insitu-production and Installation Schedule of Composite Precast Concrete Members (합성 PC 부재의 현장생산 및 설치 공정계획의 영향요소 분석)

  • Lim, Chaeyeon;Kim, Sun Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.176-177
    • /
    • 2013
  • The composite PC rahmen structure, called Green Frame, allows the main structural members such as PC column and beam to be produced on the site, resulting in a reduction of PC member transportation cost and the margin of PC plant (operation cost and profit), making it more economic than the bearing wall structure. To apply the Green Frame to practice, not only installation but also insitu-production process should be considered. Therefore, this study analyse the influence factors on insitu-production and installation schedule of composite precast concrete members. The results shall be used as basic criteria on the planning of insitu-production and installation of Green Frame.

  • PDF

Connection Method of Composite Precast Concrete Columns Using Thread Rebar (나사형 철근을 사용한 합성 PC기둥의 접합방법)

  • Kim, Tae-Koo;Lee, Sung-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.14-15
    • /
    • 2013
  • Green Frame is precast concrete column-beam structure. There are three types on column connection. The coupler type which is one of the three, need to be improved because of unstability caused by pre-installation of column before casting the slab, and quality deterioration caused by lack of workspace. Therefore, in this study, new coupler connection type with thread rebar is suggested. The result of this study shall be used for the efficiency analysis of the new coupler connection.

  • PDF

Nonlinear Finite Element Analysis of Precast Segmental Prestressed Concrete Bridge Columns (조립식 프리스트레스트 콘크리트 교각의 비선형 유한요소해석)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.292-299
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge columns is verified by comparison with reliable experimental results.

  • PDF

Reviews on the Application of Dry Coupler PC Member Joining Technology (건식커플러를 활용한 PC부재 접합기술의 적용현장에 대한 고찰)

  • Park, Je-Young;Moon, Hyung-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.233-234
    • /
    • 2023
  • This paper confirms the application sites of dry coupler technology, which is a direct connection method using screw threads, and Unlike wet couplers, this method can stand on its own without proof support and continuous work on the upper part. Furthermore, concludes with personal considerations to improve constructability.

  • PDF

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

The experimental study on productivity increase of the permanent form (비탈형 영구거푸집의 생산성 향상을 위한 실험적 연구)

  • 김용성;서동훈;강병훈;김우재;김성식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.751-756
    • /
    • 2001
  • Permanent-Form is one of system forms for reducing human labor, work costs, oscillation, noise, construction wastes and so on. Permanent-Form is made from precast method in facilities. and carried in construction site to assemble with no demolding. The biggest expense to produce Permanent-Form is about manufacturing mold. To satisfy various size of building member, the same number of manufacturing mold is needed. In this paper, studied about manufacturing mold module for acquiring economic merit and construction member safety. Permanent-Form is member stress and structural analyzed if temporary equipment were used. The result of this study is below. (1) Column sizes of Permanent-Form are 47 kinds of prototype that based on Modular coordination's basic module. 4 pieces or 6 pieces are composed basically. (2) For beam size modular coordination, standard height and width of beam are 150mm and 100mm. It brings 24 kinds of prototype. 4 pieces or 5 pieces are composed basically. (3) Structural analysis value of modular member is like this Column member shows 9.4 to 85kgf/$cm^{2}$ stress distribution and beam member shows 6.3 to 95kgf/$cm^{2}$ stress distribution. Constructing permanent form could have structural safety with use of temporary equipment

  • PDF

Seismic Analysis for Performance Assessment of Precast Segmental PSC Bridge Columns (프리캐스트 세그먼트 PSC 교각의 성능평가를 위한 지진해석)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.15-27
    • /
    • 2009
  • The purpose of this study is to investigate the seismic behavior of precast segmental PSC bridge columns. For the analysis of reinforced concrete structures, a computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) is used. To represent the interaction between tendon and concrete of a prestressed concrete member, a bonded or unbonded tendon element based on the finite element method is used. A joint element is modified to predict the inelastic behaviors of segmental joints. The solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method gives a realistic prediction of seismic behavior throughout the input ground motions for numerical examples.