• Title/Summary/Keyword: precast large panel

Search Result 45, Processing Time 0.03 seconds

Study on the Correlation between Analysis and Experiment for the Nonlinear Behavior of large Panel Precast Concrete Subassemblage (P.C 대형판 부분구조의 비선형 거동에 관한 실험과 해석 비교연구)

  • 김성호;이한선;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.47-54
    • /
    • 1990
  • Under external loads, large panel structures behave quite differently from monolithic wall structures, because of the distinct planes of weakness in the horizontal and vertical joints between panels. Study on the ultimate load and the failure mode of the large panel structures under extream lateral loads is therefore important. The purpose of this study is to predict the nonlinear behavior of the structure using the general purpose nonlinear computer program 'ANSR' being based on the quasi-static test results of the large panel structure(full scale in two story) and to examine the distribution and change mode of the internal forces which can not be obtained in the test.

  • PDF

Shaking Table Test of 1/3-Scale 3-Story Sam-Hwan Camus Precast Concrete Model (1/3축소 3층 삼환까뮤 P.C 모델의 진동대 실험)

  • 이한선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.140-154
    • /
    • 1992
  • The objective of the research stated here was aimed at providing the information needed to establish the Korean Seismic Design Code Recommendations and Guides for precast concrete (P.C) large panel apartment buildings. This was accomplished by investigation and analysis of the response of P.C large panel structures subjected to shaking table excitation simulating earthquake ground motion. one of the test specimens used was 1/3-scaled 3-story box P.C model provided by Sam-Hwan Camus Corporation. The 4m $\times$4m shaking table was used to simulate the earthquake ground motion. the employed input accelerogram was the one recorded as Taft N21E component and the peak ground acceleration(PGA) was scaled depending on the desired level of seismic severity and the time according to dynamic similitude rule. Based on results obtained from shaking table test of this P.C model, the following conclusions were drawn . (1) As far as test specimen is concerned, the seismic safety factors turns out to be 7~8. (2)P.C model has damping ratio of about8% which is twice larger than in-situ R.C. structure. And (3)this model has global displacement ductility ratio of 2~3 through the energy dissipation by opening and sliding of joints.

  • PDF

Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels

  • Brunesi, E.;Nascimbene, R.;Deyanova, M.;Pagani, C.;Zambelli, S.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.951-972
    • /
    • 2015
  • The focus of the present study is to investigate both local and global behaviour of a precast concrete sandwich panel. The selected prototype consists of two reinforced concrete layers coupled by a system of cold-drawn steel profiles and one intermediate layer of insulating material. High-definition nonlinear finite element (FE) models, based on 3D brick and 2D interface elements, are used to assess the capacity of this technology under shear, tension and compression. Geometrical nonlinearities are accounted via large displacement-large strain formulation, whilst material nonlinearities are included, in the series of simulations, by means of Von Mises yielding criterion for steel elements and a classical total strain crack model for concrete; a bond-slip constitutive law is additionally adopted to reproduce steel profile-concrete layer interaction. First, constitutive models are calibrated on the basis of preliminary pull and pull-out tests for steel and concrete, respectively. Geometrically and materially nonlinear FE simulations are performed, in compliance with experimental tests, to validate the proposed modeling approach and characterize shear, compressive and tensile response of this system, in terms of global capacity curves and local stress/strain distributions. Based on these experimental and numerical data, the structural performance is then quantified under various loading conditions, aimed to reproduce the behaviour of this solution during production, transport, construction and service conditions.

Experimental Study on the Compressive Behavior of Horizontal Joint in Precast Concrete Large Panel Structure (P.C. 대형판 구조의 수평접합부 압축거동에 관한 실험적 연구)

  • 조양호;이한선;김현산
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.19-24
    • /
    • 1994
  • Four types of horizontal joint were tested to investigate the difference with regards to the compressive behavior and strength. These include wedge-type joints (i)with and (ii)without transverse reinforcement against splitting failure of the panel concrete, and wedge-type joints (iii)with different widths of joint concrete (6cm vs 8cm) and (iv)closed platform joint. It was shown that the compressive strength of wedge-type joint is about 10% higher than that of closed-type (platform) joint. But the effect of transverse reinforcement and joint concrete widths on the strength of the joints turned out be negligible. Also, the moduli of elasticity in panel and joint are compared and the equivalent moduli of the whole wall are derived.

  • PDF

Shear Strength of the Vertical Joints in Precast Concrete Large Panel Structures (대형 콘크리트 판넬구조의 수직접합부 전단강도에 관한 연구)

  • 서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 1994
  • The strength of vertical joints of precast concrete large panel structures depends on the many factors, such as the bond strength of grout concrete (or mortar), the interlocking of the shear keys, the dowel action of horizontal bars. Many experimental studies have been conducted to in vestigate the shear strength of the vertical joints. In domestic, a few design formulas to predict shear strength of the vertical joint were proposed by some investigators, but formulas were based on limited experimental results. The objective of this paper is to propose a suitable formula for the shear strength of vertical joints with 94 vertical joints experimental data using the modified Mohr-Coulomb's 4ield theory and regression analysis. From the comparison of the proposed formula with others, it is shown that the proposed formula can be used economically for the design of vertical joints.

A Study on the Improvement of Multi-Layer Coating Method on Concrete Base (성형 콘크리트 복층마감도장 공법 개선에 관한 연구)

  • Kim, Chong-Weon;Choi, In-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.1
    • /
    • pp.93-105
    • /
    • 2003
  • The Precast Concrete(PC) method was developed for a large production of a structure in Europe. Afterwards, this PC method has been applied to a structure and an outside Coating of buildings extensively. The outside Coating of the building applied this PC method is a method to put tiles or stones to base concrete. And there is a method to use paints for, so the expression of various patterns is possible. The Multi-Layer Coating is one of the methods to use paints. This Multi-Layer Coating method can show various designs of external appearance with Foam when it is made with the PC panel. Also, the paint film of the PC panel enables a splendid appearance, and a protective function of concrete is possible, too. Therefore, it makes good durability of the PC. Besides, maintenance is easy to manage because it is free from pollution when it uses metallic materials, stones, or any other materials. You might have no trouble in applying the Multi-Layer Coating method in order to save a merit of an outside Coating on the PC panel. However, the Multi-Layer Coating method used as a current outside Coating method has pollution and bad working environment because Oil Epoxy Resins have toxicity and flammability. Therefore, a lot of warnings are required for coating work in order to have appropriate quality because working hours are short, and production efficiency is low too. These reasons make the cost of construction of the Multi-Layer Coating method increase. And employers or designers may have problems in selecting this Multi-Layer Coating method. Therefore, the purpose of this study is to get activation of the Multi-Layer Coating method by offering improvement measures about the problems of the existing Multi-Layer Coating method.

Effects of Reinforcing Method Influnced to the Shear Strength of Vertical and Horizontal Joints in Precast Concrete Large Panel Structures -Focused on the Vertical Joints and Slab-Slab Type Horizontal Joints- (대형판조립식 구조 수직.수평접합부의 전단강도에 미치는 보강방법의 영향-수직접합부 및 슬래브-슬래브 수평접합부를 중심으로-)

  • Chung, Lan;Park, Hyun-Soo;Cho, Seung-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.171-179
    • /
    • 1996
  • A proposal of the basic fbrm on the design of joint parts that can increase the shear strength by the useful joint shapes of each member is intended. The vertical joint parameters are the number of' shear key and a variety of' reinfbrcement details and the horizontal joint paramctcrs arc t,hc number of shear key and the direction of' shear f'orcc. 10 PC panel vortical joint arid 12 PC panel horizontal joint specimens were tested to investigate the effects of these parameters. Test results show that : 1. The ductility of the test specimen that has the horizontal reinforcing steels is larger than that does not have. 2. The maximum resisting force of round bar specimen is similar to that of strand wire specimen under the condition of fixed horizontal displacement.

A Study on Early Strength Estimation of Precast Concrete joint Mortar with Microwave (마이크로파에 의한 PC접합모르타르의 조기강도추정에 관한 연구)

  • 원준연;박일용;백민수;이종균;안형준;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.217-222
    • /
    • 2000
  • A large Pc structure building is system that consisted of bearing wall and slab joint. It has general structure stability from unity thar each members tied at joint. The strength of mortar that packing in joint among panels is important to internal force in entire building system. Do, if we could get early strength estimation with microwave. It would bring good construction planning, reduce construction time, and judge building stability and so on. The purpose of this study is to develop early estimation method for making better quality control and constructing good PC panel structure. The results of this study were as follows :1) With sealed molds, reduced moisture volatilization to more than 60% and enlarged 30% accelerated compressive strength than before one. 2) To get more accelerated strength, we should control maximum temperature difference to $30^{\circ}C$ downward 3)Interrelation with 7-day and 28-day strength were 0.831,0.902, and it is above than before one

  • PDF

Experimental Study on the Precast Concrete Joint using Re-bar Debonding and Cutting Technique (철근 비부착 및 절단 기법을 사용한 PC 접합부의 실험적 연구)

  • Yi, Waon-Ho;Moon, Jung-Ho;Lee, Yong-Jae;Lee, Han-Jun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.131-141
    • /
    • 2002
  • Precast concrete (PC) panels are often used as retaining walls to support soil pressure. In such a case, the panels should be connected at the location where PC panels meet with a buttress. However, it is not easy to provide enough development length for the reinforcing steels due to the limited width of the buttress. If it happens, the width of buttress should be increased as large enough although it is not desirable. The critical section required for providing the development length is always located where the flexural moment is maximum. Thus it is the place the buttress width ends. Also it is the place that the reinforcing steels stressed to maximum. However, it is possible to make differentiate between the maximum moment location and the most stressed location of reinforcing steels. It means that the most stressed location of reinforcing steels, the critical section, can be moved to the other place where the moment is not maximum. New critical location will have less moment than that of buttress width ends. In consequence, the development length would be longer than that of the typical way of construction. Debonding or cutting technique make it possible to reduce the moment strength of a section. Therefore reinforcing steels are debonded or cut to have a desired flexural strength at a desired place. In this study, five test specimens in full scale were erected to examine the effects of critical section movement in PC panel joints. Test parameters were the length variations of debonded and cut reinforcing steels. The test results showed that the debonding or cutting technique could be used to lengthen the development length in the joint of PC panels.

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.