• Title/Summary/Keyword: precast column

Search Result 173, Processing Time 0.024 seconds

Development of Beam-Column Connection for Green Rhamen Structural Apartment (공동주택 적용을 위한 친환경 라멘구조 접합부 개발)

  • Yoon, Tae-Ho;Hong, Won-Kee;Park, Seon-Chee;Yune, Dai-Young
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.159-165
    • /
    • 2010
  • The composite frame system suggested in this paper consists of steel reinforced concrete beam encased with structural tee and precast concrete column. This system has advantages such as reduction of materials, CO2 emissions and waste. To commercialize the new composite frame system, it is necessary to develop connections that can effectively connect each member. Therefore, a hybrid connection that has steel type connection and reinforced concrete together is utilized to connect easily at the composite frame system. To evaluate the structural performance of the composite frame system, an experimental investigation is presented. In this study, the flexural moment capacity of the composite frame was determined using the strain compatibility approach. The strain compatibility approach can be used to predict the flexural moment capacity at each limit state. As a result, all elements of the beam to column connection are represented to fully interact between each other. The specimens show errors of -1.9% in the yield limit state and 0.9% at the maximum load limit state. Also, testing shows that beam to column connections have characteristics of semi-rigid connection as per Eurocode 3.

Development of Beam-Column Connection for The New Apartment Structural System (장수명 공동주택용 보-기둥 접합부 시공방법 개발)

  • Yoon, Tae-Ho;Hong, Won-Kee;Kim, Sun-Kuk;Park, Seon-Chee;Yun, Dai-Young
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.145-151
    • /
    • 2010
  • Bearing wall system was used extensively in most multi-residential apartment buildings in Korea. However, bearing wall apartments have the lack of architectural plan flexibility, remodelling-incompatible, causing serious economic losses in terms of construction waste. Recently, many researchers have studied the use of Rahmen structure as a potential alternative. The beam-column connection in the paper for long-life apartment housing forms connection of a Rahmen structure utilizing the advantages of steel and reinforced concrete. In addition, reduction of cast-in place concrete and construction schedule is expected by using precast concrete. Reduction effect of quantity decreased construction costs and $CO_2$ emission of key construction materials. However, verifying the feasibility of new construction method entails numerous challenges. Accordingly, the purpose of this study is to analyze the construction feasibility of sleeve, coupler, and pressure welding connections for long-life apartment building structure. A 3D modeling software was used to perform the analysis, and a real scale model was created to verify the results of construction feasibility. By verifying the construction feasibility of beam-column connections, this study will contribute to the efficient application of these methods on construction sites.

Performance Analysis of SMART Frame Applied to RC Column-Beam Structures (RC 라멘조에 SMART Frame 적용 시 효용성 분석)

  • Cho, Wonhyun;Lim, Chaeyeon;Jang, Duk Bea;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.168-169
    • /
    • 2015
  • SMART Frame is a composite precast concrete structure system to deliver the advantages of both steel frame and reinforced concrete. Many studies have established to date that SMART Frame is more advantageous than conventional frame-type structure in terms of structural stability, constructability, economic viability as well as reduction of construction schedule. However, such studies have focused primarily on wall-type or flat slab-type apartment housing structures, failing to include Rahmen structures in their scope. Accordingly, this study aims to analyze the benefits of potential application of SMART Frame to RC Rahmen structures. As the structural stability and constructability of SMART Frame is already proven, this study reviews its benefits from the perspective of cost reduction. Conclusion of this study will be used subsequently in predicting the benefits of SMART Frame when it is adapted to RC Rahmen structures.

  • PDF

Application of MRS(Multi Ribbed Slab) System with 4Story-1Piece Columns (4층(層)1절(節) 기둥을 이용한 MRS(Multi Ribbed Slab)공법 적용)

  • Kim, Jung-Taek;Im, Ju-Heuk;Jeon, Byong-Kap;Kim, Yong-Nam
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.85-88
    • /
    • 2011
  • MRS(Multi Ribbed Slab) method was developed to accomodate Korean construction practice and needs of Korean customer. By means of 4story-1piece column and MRS method, we achieved construction cost cut down and reduction of construction period.

  • PDF

Seismic Performance of Fabricated Internally Confined Hollow CFT Column (조립식 내부 구속 중공 CFT 기둥의 내진 성능)

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.397-407
    • /
    • 2013
  • Recently, a great progress has been made in bridge construction technology through the development of high performance materials and new structural types. However, most of attention has been paid to the cast-in-place technologies and material cost saving. The cast-in-place method is always subject to some environmental damages in construction sites, which frequently causes conflicts with residents. To overcome the disadvantages, a lot of fabrication construction method was developed. Most fabrication construction methods developed up to now have been applied for superstructure of bridges. In contrast, such fabricable methods developed for substructures are extremely rare. A fabricated column using ICH CFT(Internally Confined Hollow CFT) column was developed in a series of previous researches. Included in the previous studies are design and construction methods for the precast segmental coping, the column-coping connection, the column-segment connection, column-foundation connection. In this paper, seismic performance of the fabricated ICH CFT columns was extensively investigated experimentally. Two test specimens were prepared depending on the connection methods of segments; one by mortar-grouting method and the other by reinforcement method using stiffeners.

Compressive Strength of Horizontal Joints in Precast Concrete Large Panel System (대형 콘크리트 패널구조 수평접합부의 지지력 성능에 관한 연구)

  • 서수연;정봉오;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.138-147
    • /
    • 1994
  • The compressive strength of horizontal joints in precast concrete large panel structures depends on parameters such as grout and panel strength, detail of joint, joint moment, width of grout column, and etc. 44 specimens were tested to investigate the effects of parameters that influence the compressive strength of horizontal joints. The design formula specified in Korean Cock for compression horizontal joints must be reviewed, because it was based on the test results of the joint types not used in Korea. In this study comparing the test results, there fore, the validity of the design formulas was evaluated and a suitable formula was proposed to predict the ultimate strengths of compression horizontal joints. The increase of ultimate strengths was not observed, even if confined the horizontal displacement of slabs and reinforced the wall edge, when the grout strength is lower than panel strength. From the comparison of test results and those by the proposed formula, it was shown that proposed formula was suitable to predict the ultimate compressive strength of horizontal joints.

Test for the influence of socket connection structure on the seismic performance of RC prefabricated bridge piers

  • Yan Han;Shicong Ding;Yuxiang Qin;Shilong Zhang
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.89-97
    • /
    • 2023
  • In order to obtain the impact of socket connection interface forms and socket gap sizes on the seismic performance of reinforced concrete (RC) socket prefabricated bridge piers, quasi-static tests for three socket prefabricated piers with different column-foundation connection interface forms and reserved socket gap sizes, as well as to the corresponding cast-in-situ reinforced concrete piers, were carried out. The influence of socket connection structure on various seismic performance indexes of socket prefabricated piers was studied by comparing and analyzing the hysteresis curve and skeleton curve obtained through the experiment. Results showed that the ultimate failure mode of the socket prefabricated pier with circumferential corrugated treatment at the connection interface was the closest to that of the monolithic pier, the maximum bearing capacity was slightly less than that of the cast-in-situ pier but larger than that of the socket pier with roughened connection interface, and the displacement ductility and accumulated energy consumption capacity were smaller than those of socket piers with roughened connection interface. The connection interface treatment form had less influence on the residual deformation of socket prefabricated bridge piers. With the increase in the reserved socket gap size between the precast pier column and the precast foundation, the bearing capacity of the prefabricated socket bridge pier component, as well as the ductility and residual displacement of the component, would be reduced and had unfavorable effect on the energy dissipation property of the bridge pier component.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

Structural Behavior Analysis of Concrete Encased and Filled tube Square Column with Construction Sequence (시공단계를 고려한 피복충전형 콘크리트충전 각형기둥의 구조적 거동 분석)

  • Kim, Sun Hee;Yom, Kong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • Constructions of buildings downtown are increasing as much as ever with a strong demand. Top-Down Method is suitable for its advantage in minimizing its disturbance to the neighborhood. Pre-founded when applied to CFT Column on-site welded is required for splicing. To complement the welded built-up square composite Column was developed. Top-down process will be pouring concrete in accordance with a step-by-step process. Thus, Pre-founded Column and cover concrete to determine the stress condition. Therefore, Concrete filled steel square tubular columns encased with precast concrete were studied. Five Centrally loaded Columns were tested to investigate the axial load carrying capacity. we analyzed the strength and behavior of CET Column by Loading conditions and concrete strength, thickness of cover concrete through structure experiments.

Evaluation of Structural Performance the Hollow PC Column Joint Subjected to Cyclic Lateral Load (반복 횡하중을 받는 유공 PC 기둥 접합부의 구조성능 평가)

  • Seo, Soo-Yeon;Yoon, Seong-Joe;Lee, Woo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.335-343
    • /
    • 2008
  • In order to improve the workability in erecting Precast Concrete (PC) members and enhance the seismic resistance capacity of the joints in PC moment frames, a new PC column and its construction process are introduced in this paper. This column is manufactured by centrifugal force in keeping the hollow tube inside; the hollow is little bit wide and the grout can be poured from top to bottom after erection at site so that more compact grouting is possible in horizontal joint. The repeated cyclic loading test for four full scaled specimens was conducted to evaluate the seismic resistance capacity of the joint designed by the proposed system. For the continuity of main reinforcements in column, two connecting methods are used in designing specimens; one is to use mechanical connector and other is lab splice. From the cyclic lateral loading test, it was found that the seismic capacity of the developed PC column joint is comparable to that of monolithic joint.