• Title/Summary/Keyword: precast buildings

Search Result 113, Processing Time 0.024 seconds

Structural Design of High-Rise Concrete Condominium with Wall Dampers for Vibration Control

  • Tsushi, Takumi;Ogura, Fumitaka;Uekusa, Masahiro;Kake, Satoshi;Tsuchihashi, Toru;Yasuda, Masaharu;Furuta, Takuya
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.201-209
    • /
    • 2019
  • This paper presents a structural design of the "(Tentative Name) Toranomon Hills Residential Tower" which is currently under construction in Tokyo. The building is a reinforced concrete high-rise residential complex building with 54 stories above ground, 4 basement levels, and a building height of about 220 m. It is a requirement to provide the highest grade of residence in Japan, and in terms of the structural design, it is required to provide wide and comfortable spaces with high seismic performance. These requirements are satisfied by providing a total of 774 vibration control walls of two types. Also, to further improve the structural performance, steel fibers at the rate of 1.0vol% are provided in the ultra-high strength concrete used in the column members.

A Evaluation on Flexural Behavior for Hollow Core Slab of Fire Resistance section for Residence Building (주거용 내화단면 중공슬래브의 휨거동 평가)

  • Boo, Yoon-Seob;Bae, Kyu-Woong;Shin, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.61-68
    • /
    • 2023
  • A two-hour fire-resistance PC hollow slab for residential use was developed to secure structural and fire-resistance performance and to be applied to the general building and apartment housing markets. Compared to the existing hollow slab, in order to secure the same or better structural performance and economic feasibility by reducing the quantity, it was attempted to secure the fire resistance performance by reducing the concrete filling rate in the cross section and adjusting the thickness of the upper and lower flanges by optimizing the hollow shape in the cross section of the slab. For structural performance evaluation, experiments were performed on PC hollow slabs by varying the member thickness and the presence or absence of overlaid concrete, and all of the experimental results showed that the design strength was sufficiently exhibited and that stability during construction was possible. The developed synthetic PC hollow slab has secured fire resistance and residential performance so that it can be applied to all buildings, and it is intended to be immediately applied to the field.

Energy equivalent lumped damage model for reinforced concrete structures

  • Neto, Renerio Pereira;Teles, Daniel V.C.;Vieira, Camila S.;Amorim, David L.N.F.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.285-293
    • /
    • 2022
  • Lumped damage mechanics (LDM) is a recent nonlinear theory with several applications to civil engineering structures, such as reinforced concrete and steel buildings. LDM apply key concepts of classic fracture and damage mechanics on plastic hinges. Therefore, the lumped damage models are quite successful in reproduce actual structural behaviour using concepts well-known by engineers in practice, such as ultimate moment and first cracking moment of reinforced concrete elements. So far, lumped damage models are based in the strain energy equivalence hypothesis, which is one of the fictitious states where the intact material behaviour depends on a damage variable. However, there are other possibilities, such as the energy equivalence hypothesis. Such possibilities should be explored, in order to pursue unique advantages as well as extend the LDM framework. Therewith, a lumped damage model based on the energy equivalence hypothesis is proposed in this paper. The proposed model was idealised for reinforced concrete structures, where a damage variable accounts for concrete cracking and the plastic rotation represents reinforcement yielding. The obtained results show that the proposed model is quite accurate compared to experimental responses.

Structural Performance and Usability of Void Slab Established in T-deck Plate (T형 데크 플레이트 중공형 슬래브의 구조성능 및 사용성능)

  • Hong, Eun-Ae;Chung, Lan;Paik, In-Kwan;Yun, Sung-Ho;Cho, Seung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • In recent years, extension of life span of buildings is becoming an important issue in our society. To improve the life span of buildings, rhamen structure construction and long-spanned structures are advantageous. And in order to achieve this goal, structural elements of buildings must be light and slender. As an alternative method, general porous slabs are used frequently domestically and internationally. But the study on the porous slabs using T-deck plate and assembly of light weight precast construction is insufficient at present. In this study, flexural and fatigue tests were performed on six specimens to verify structural performance and serviceability. The main parameters of the specimens were light weight and T-deck plate construction possibility as well as slab thickness. The test results indicated that the strength of porous slabs using T-deck plate and assembly of light weight were much better than general RC slabs and porous slabs without T-deck plate. And stiffness was much better than that of other tested slabs.

Analysis of Structural Work Scheduling of Green Frame - Focusing on Apartment buildings - (Green Frame의 골조공사 공기 분석 연구 - 공동주택을 중심으로 -)

  • Lee, Sung-Ho;Kim, Shin-Eun;Kim, Gwang-Hee;Joo, Jin-Kyu;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.301-309
    • /
    • 2011
  • Apartment housings that adopt a bearing wall structure design, which account for a majority of the housing units available in Korea, are not free from structural constraints that limit the extension of their service life. The resulting need for reconstruction from the ground up requires a massive consumption of resources and energy, and triggers environmental pollution resulting from construction wastes. As a solution to such issues, the government enforces incentive schemes to promote a remodeling-friendly rahmen structure design. Green Frame, which is a novel concept of composite precast concrete structure to support rahmen structure apartment housing buildings, can address the constraints of bearing wall structure and conventional rahmen structure designs that limit the potential for remodeling projects, while reducing the term of construction. Therefore, this study aims to analyze the characteristics of Green Frame and its absolute term of construction, and compare the terms of frame work construction in apartment housing projects adopting different structural design approaches to illuminate their differences. In the end, Green Frame is found to be capable of reducing the term of construction in apartment housing projects. As the term of construction is a very critical element of a construction project, Green Frame will ultimately prove to be one of the key enablers to ensure the success of apartment housing construction projects.

Development of Form to Improve the Productivity of PC Structure Connections -Focused on Apartment Buildings- (PC구조 접합부공사의 생산성 향상을 위한 거푸집 개발 -공동주택을 중심으로-)

  • Kim, Seon-Hyung;Lee, Won-Suk;Kim, Sun-Kuk;Lee, Dong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.11-20
    • /
    • 2010
  • With the amendment to the Building Act in November of 2005 that offered incentives in terms of floor area ratio and number of stories to apartment buildings adopting the Rahmen structure to facilitate remodeling, the construction industry is paying more attention to PC structures. As connections between PC columns and beams require complex design, it is very difficult to install and remove forms. Since forms made of plywood for such connections are fabricated and installed on site, a significant amount of labor is required, and constructability is low. Furthermore, after concrete casting, the forms are removed in a state in which they cannot be recycled, which leads to a significant amount of construction waste. For this reason, a solution to address such issues needs to be studied. However, many researchers have focused only on the structural performance of PC structures in Korea and elsewhere, ignoring the need for research on the forms used in building PC structure connections. Therefore, this research aims to develop a form that can improve the productivity of PC structure connection construction, and compare it with conventional forms to highlight its contribution to gains in productivity and economic viability.

Shear Behavior of Precast Prestressed Inverted-Tee Concrete Beams with Dapped Ends (프리캐스트 프리스트레스트 콘크리트 역티형보의 댑단부 전단거동)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.46-53
    • /
    • 2001
  • Two full scale precast pretensioned dapped ended rectangular beams designed by PCI design handbook for a major domestic live load of market and parking building - 500kgf/㎡ and 1,200kgf/㎡ were investigated experimentally. The bottom length of beams was 60cm which was same to the length of rectangular column in the base of five-story market or parking buildings. The height of dap was web hight plus half of the flange height within the allowable limit of PCI method. Shear tests were performed on four beam ends. Followings were obtained from the experimental study. All of the specimens were fully complied with the PCI design handbook. Two of four specimens which were designed for live load of 1,200kgf/㎡ showed crackings at the re-entrant corner of dap before the full service loadings, and failed by direct shear at the load level much less than their calculated nominal strength. The specimens designed for live load of 1,200kgf/㎡ failed at 772 tonf and 78.36tonf by direct shear crackings. This strength was less than PCI limit of 81.9 tonf and higher than ACI limit of 65.62tonf. Thus, the limit suggested by ACI seems more reasonable in regard of safety in view of this test results. According to load-strain curves, the strain of hanger reinforcement reached almost yield strain. It is recommended to use more inclined hanger reinforcement of improve the strength and serviceability.

Flexural Test on Composite Deck Slab Produced with Extruded ECC Panel (압출성형 ECC 패널을 이용하여 제작된 복합바닥슬래브의 휨 거동)

  • Cho, Chang-Geun;Han, Byung-Chan;Lee, Jong-Han;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.695-702
    • /
    • 2010
  • This paper presents a reinforced concrete composite deck slab system newly developed using a high ductile ECC extrusion panel. In the construction practice, the cracking of reinforced concrete slab often becomes a problem especially in parking garages, underground structures, and buildings. The ECC panel manufactured by extrusion process as a precast product has not only a high-quality in control of cracking but also a merit in applying the construction of concrete slab because the use of ECC panel can realize a formless or half-precast construction with cast-in-place concrete. In the newly developed deck slab system, the ECC extrusion panel is located in the bottom of slab with the thickness of 10 mm, reinforcements are assembled and located on the ECC panel, and finally the topping concrete is placed in the field. In order to evaluate the newly developed slab system, experimental works by four point bending test are conducted to compare with the conventional reinforced concrete slab system. From experiment, the developed deck slab system using a ECC panel gives many improved performances both in control of bending cracking and in load-carrying capacities of slabs.

Structural Behavior Analysis of Concrete Encased and Filled tube Square Column with Construction Sequence (시공단계를 고려한 피복충전형 콘크리트충전 각형기둥의 구조적 거동 분석)

  • Kim, Sun Hee;Yom, Kong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • Constructions of buildings downtown are increasing as much as ever with a strong demand. Top-Down Method is suitable for its advantage in minimizing its disturbance to the neighborhood. Pre-founded when applied to CFT Column on-site welded is required for splicing. To complement the welded built-up square composite Column was developed. Top-down process will be pouring concrete in accordance with a step-by-step process. Thus, Pre-founded Column and cover concrete to determine the stress condition. Therefore, Concrete filled steel square tubular columns encased with precast concrete were studied. Five Centrally loaded Columns were tested to investigate the axial load carrying capacity. we analyzed the strength and behavior of CET Column by Loading conditions and concrete strength, thickness of cover concrete through structure experiments.

Preliminary Study of Modulization Construction Method on Concrete Structure for High-rise Building (고층 콘크리트 구조물 모듈화 시공 시스템 기초연구)

  • Koh, Min-Hyeok;Cho, Chang-Yeon;Shin, Tae-Hong;Kwon, Soon-Wook;Kim, Yea-Sang;Chin, Sang-Yoon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.334-339
    • /
    • 2008
  • Construction that over 70% of the structure consists of concrete gets bigger and higher gradually and the demand of that is increasing as well. However, it's not easy to supply young and skilled persons on construction site because of social avoidance phenomena about 3D occupation, so it causes serious problems like aging and shortage of technicians. To solve the problems, executives related to the construction field make a management effort in various ways such as construction period shortening, labor productivity improvement and good quality but recently, they have an increasing interest in the necessity of the modularization of the high-rise building and the automation of the engineering development for the strengthening of international competitive power as more active and long-term alternatives. Therefore, this study is to propose the roadmap in order to make lots of efforts in developing construction technologies of high-rise buildings by performing a foundation study, the strategy for 4-step research development, on modularized construction system of concrete structure of high-rise buildings through domestic and foreign preceding research analyses associated with optimal design modularization technique, module factory automation and assembly automation of modularized objects.

  • PDF