• Title/Summary/Keyword: pre-tensioned concrete

Search Result 33, Processing Time 0.029 seconds

Software for application of Newton-Raphson method in estimation of strains in prestressed concrete girders

  • Gocic, Milan;Sadovic, Enis
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.121-133
    • /
    • 2012
  • Structures suffer from damages in their lifetime due to time-dependant effects, such as fatigue, creep and shrinkage, which can be expressed by concrete strains. These processes could be seen in the context of strain estimation of pre-stressed structures in two phases by using numerical methods. Their aim is checking and validating existing code procedures in determination of deformations of pre-tensioned girders by solving a system of nonlinear equations with strains as unknown parameters. This paper presents an approach based on the Newton-Raphson method for obtaining the stresses and strains in middle span section of pre-stressed girders according the equilibrium state.

The Design of Viaduct Girder of Incheon Bridge (인천대교 고가교 상부거더 설계)

  • Kang, Dang-Ok;Cho, Ik-Sun;Kim, Yeong-Seon;Yang, Jang-Ho;Shin, Hyun-Yang;Yoon, Man-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.294-297
    • /
    • 2006
  • The purpose of this study is to introduce design practice for prestressed concrete box girder with AASHTO LRFD Design Specification. Distinctive features of viaduct girder of Incheon Bridge are pre-tensioned transverse tendon, 3-dim. transverse analysis, enlarged opening in diaphragm and so on.

  • PDF

Development and application of a hybrid prestressed segmental concrete girder utilizing low carbon materials

  • Yang, Jun-Mo;Kim, Jin-Kook
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.371-381
    • /
    • 2019
  • A hybrid prestressed segmental concrete (HPSC) girder utilizing low carbon materials was developed in this paper. This paper introduces the hybrid prestressing concept of pre-tensioning the center segment and assembling all segments by post-tensioning, as well as the development process of the low carbon HPSC girder. First, an optimized mix proportion of 60 MPa high strength concrete containing high volume blast furnace slag was developed, then its mechanical properties and durability characteristics were evaluated. Second, the mechanical properties of 2,400 MPa high strength prestressing strands and the transfer length characteristics in pre-tensioned prestressed concrete beams were evaluated. Third, using those low carbon materials and the hybrid prestressing concept, the HPSC girders were manufactured, and their structural performance was evaluated. A 30-m long HPSC girder for highway bridges and a 35-m long HPSC girder for railway bridges were designed, manufactured, and structurally confirmed as having sufficient strength and safety. Finally, five 35-m long HPSC girders were successfully applied to an actual railway bridge for the first time.

Analysis of actively-confined concrete columns using prestressed steel tubes

  • Nematzadeh, Mahdi;Haghinejad, Akbar
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.477-488
    • /
    • 2017
  • In this paper, an innovative technique for finite element (FE) modeling of steel tube-confined concrete (STCC) columns with active confinement under axial compressive loading is presented. In this method, a new constitutive model for the stress-strain relationship of actively-confined concrete is proposed. In total, 14 series of experimental STCC stub columns having active confinement were modeled using the ABAQUS software. The results obtained from the 3D model including the compressive strength at the initial peak point and failure point, as well as the axial and lateral stress-strain curves were compared with the experimental results to verify the accuracy of the 3D model. It was found that there existed a good agreement between them. A parametric study was conducted to investigate the effect of the concrete compressive strength, steel tube wall thickness, and pre-stressing level on the behavior of STCC columns with active confinement. The results indicated that increasing the concrete core's compressive strength leads to an increase in the compressive strength of the active composite column as well as its earlier failure. Furthermore, a reduction in the tube external diameter-to-wall thickness ratio affects the axial stress-strain curve and the confining pressure, while increasing the pre-stressing level has a negligible effect on the two.

Compressive behaviour of circular steel tube-confined concrete stub columns with active and passive confinement

  • Nematzadeh, Mahdi;Hajirasouliha, Iman;Haghinejad, Akbar;Naghipour, Morteza
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.323-337
    • /
    • 2017
  • This paper presents the results of a comprehensive experimental investigation on the compressive behaviour of steel tube-confined concrete (STCC) stub columns with active and passive confinement. To create active confinement in STCC columns, an innovative technique is used in which steel tube is laterally pre-tensioned while the concrete core is simultaneously pre-compressed by applying pressure on fresh concrete. A total of 135 STCC specimens with active and passive confinement are tested under axial compression load and their compressive strength, ultimate strain capacity, axial and lateral stress-strain curves and failure mode are evaluated. The test variables include concrete compressive strength, outer diameter to wall thickness ratio of steel tube and prestressing level. It is shown that applying active confinement on STCC specimens can considerably improve their mechanical properties. However, applying higher prestressing levels and keeping the applied pressure for a long time do not considerably affect the mechanical properties of actively confined specimens. Based on the results of this study, new empirical equations are proposed to estimate the axial strength and ultimate strain capacity of STCC stub columns with active and passive confinement.

Shear Strengthening by Externally Post-tensioning Steel Rods in Damaged Reinforced Concrete (RC) Beams (손상입은 철근콘크리트 보의 포스트텐셔닝 강봉을 이용한 전단 보강)

  • Lee, Swoo-Heon;Lee, Hee-Du;Park, Seong-Geun;Shin, Kyung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • This experimental investigation was conducted to observe the shear strengthening behavior of pre-damaged reinforced concrete (RC) beams strengthened with externally post-tensioning steel rods. A total of six simply supported beams - two control beams and four post-tensioned beams using external steel rods - were tested to failure in shear. The external steel rods of 18 mm or 28 mm diameter were respectively employed as post-tensioning material. The four post-tensioned beams have a V-shaped profile with a deviator (or saddle pin) located at mid-span, and the post-tensioning system increased the low load-carrying capacity and overcame a little bit of deflection caused by damage. Concretely, the load-carrying capacity and flexural stiffness were respectively increased by about 25~57% and 263~387% due to the post-tensioning when compared with the unstrengthened control beams.

An Experimental Study on Allowable Compressive Stress at Prestress Transfer in Pre-Tensioned Concrete Members (프리텐션된 콘크리트 부재의 프리스트레스 도입시 허용압축응력에 관한 실험적 연구)

  • Lee, Jeong Yeon;Lee, Deuck Hang;Kim, Kang Su;Park, Min Kook;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • In the previous research, allowable compressive stress was analyzed based on strength theory, in which primary effect factors on the allowable compressive stress, such as eccentricity ratio, section type, section size, prestress and self-weight moment, were considered. As its results, allowable compressive stress equations were proposed. As a series of the previous research, this paper presents an experimental study on the prestress at transfer of pre-tensioned members with different eccentricity ratios. The results shows that ACI318-08 and EC2-02 are unconservative for the members under low eccentricity ratios, and they are conservative for the members under high eccentricity ratios. Compared to the code provisions, the results indicates that the proposed equation reasonably well evaluates the allowable compressive stresses for those with different eccentricity ratios.

Nonlinear shear strength of pre-stressed concrete beams

  • Rahai, Alireza;Shokoohfar, A.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.441-458
    • /
    • 2012
  • The shear strength is an important factor in the design of prestressed concrete beams. Therefore, researchers have utilized various methods to determine the shear strength of these elements for the design purposes. To evaluate some of the proposed theoretical methods, numerous models of post-tensioned beams with or without vertical prestressing are selected and analyzed using the finite element method and assuming nonlinear behavior for the materials. In this regard the validity of modeling is evaluated based on some tests results. In the second part of the study two beam specimens are built and tested and their load-deformation curve and cracking pattern are studied. The analytical results consist of compressive strut slope and mid span load deflection are compared with some experimental results, and the results of some codes' formulas. Finally comparing the results of nonlinear analysis with the experimental values, a new formula is proposed for determining strut slopes in prestressed concrete beams.

Removable shear connector for steel-concrete composite bridges

  • Suwaed, Ahmed S.H.;Karavasilis, Theodore L.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.107-123
    • /
    • 2018
  • The conception and experimental assessment of a removable friction-based shear connector (FBSC) for precast steel-concrete composite bridges is presented. The FBSC uses pre-tensioned high-strength steel bolts that pass through countersunk holes drilled on the top flange of the steel beam. Pre-tensioning of the bolts provides the FBSC with significant frictional resistance that essentially prevents relative slip displacement of the concrete slab with respect to the steel beam under service loading. The countersunk holes are grouted to prevent sudden slip of the FBSC when friction resistance is exceeded. Moreover, the FBSC promotes accelerated bridge construction by fully exploiting prefabrication, does not raise issues relevant to precast construction tolerances, and allows rapid bridge disassembly to drastically reduce the time needed to replace any deteriorating structural component (e.g., the bridge deck). A series of 11 push-out tests highlight why the novel structural details of the FBSC result in superior shear load-slip displacement behavior compared to welded shear studs. The paper also quantifies the effects of bolt diameter and bolt preload and presents a design equation to predict the shear resistance of the FBSC.

Problem and Improvement Measure of PHC Pile Construction (PHC파일 시공관리 문제점 및 개선방안)

  • Park, Tae-Kyu;Lee, Jung-Chul;Lee, Chan-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.344-348
    • /
    • 2008
  • During the last few years, the use of Pre-tensioned spun High strength Concrete(PHC) pile has been gradually increased in many construction sites such as super high-rise and large building construction. there is almost no specific code and/or standard described in the specifications to check verticality for Pre-tensioned Spun High Strength Concrete pile installation process. The most commonly used method for the vortical PHC pile installation is a naked-eye measurement or water level measurement conducted by assistant crew in the construction sites. And recent analysis results of the pile cutting work revealed that it frequently makes a lot of cracks which significantly reduce the strength of the pile and is very labor intensive work, thus requiring a large amount of additional time, costs, and efforts. The main objective of the research is to analize problems and to improvement. measure of PHC Pile Construction. The improvement measure present to the main problem with survey and discussion.

  • PDF