• Title/Summary/Keyword: pre-loading condition

Search Result 57, Processing Time 0.024 seconds

A Study on the Shear Strengthening Effect of Reinforced Concrete Beams with Structural Damage (구조적 손상을 입은 철근콘크리트 보의 전단보강 효과에 관한 연구)

  • Shin, Yong-Seok;Kim, Jeong-Hoon;Kim, Jeong-Sup;Kim, Kwang-Seok;Cho, Cheol-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.43-51
    • /
    • 2008
  • This study examines shear capacity performance and structural characteristics of reinforced concrete beam using carbon fiber sheet(CFS), g)ass fiber sheet(GFS), glass fiber steel plate(GSP) and carbon fiber bar CB) which are reinforcing materials for reinforced concrete beam in order to produce similar condition to repair and reinforce actual structure and aims to provide data available In designing and constructing reinforced concrete structures under the structural damage. This study obtains the following conclusions. After considering the shear experiment results. it was indicated that the CB reinforced test object was the best in the shear capacity improvement and ductility capacity as it was contained in the concrete and was all operated, Also, GFS reinforced test object indicated the reduced flexural capacity but good shear capacity. GSP reinforced test object had bigger reinforcing strength than other reinforcing test objects. On the other hand, it showed the lowest reinforcement effect as compared section thickness of reinforced material because it showed the bigger relativity a section thickness of reinforced material. If the adherence to the concrete is improved, it will seem to show bigger reinforcement effect.

Proposal of Equations related to Settlement and Lateral Movement According to Embankment on Marine Sedimentary Ground (해성퇴적지반에서 성토로 인한 침하량과 측방유동량 산정식 제안)

  • Kim, Kyeong-Su;Chung, Dae-Seouk;Lee, Jong-Gil
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.191-202
    • /
    • 2010
  • In this study, the relationship between the settlements and the horizontal displacements according to embankment was analyzed at the marine sedimentary grounds for preparation of a site, and then the empirical equations of both the settlement and the horizontal displacement considering the embankment load and the thickness were proposed. To do this, the field and laboratory tests were performed at the improvement section where the pre-loading method was applied, and the field monitoring was performed using various sensors. Based on the results of the tests and monitoring, the ground deposits, soil characteristics and engineering properties were analyzed and the settlements and lateral movements were estimated by the Regression analysis. The ground deposits from the ground surface were composed of reclaimed soils, sedimentary soils and based rocks. The thickness of clay in the sedimentary soils layer was ranged from 3.9 m to 44.5 m. The embankment heights to improve the ground during pre-loading were constructed from 4.7 m to 7.8 m in each section. The settlements during embankment were ranged from 0.959 m to 2.217 m and the lateral movements were ranged from 0.048 m to 0.313 m. As the result of regression analysis, the equations of settlements and horizontal displacements according to embankments may be proposed as $s=0.02h^2+0.11h$ and ${\delta}=0.01e^{0.37h}$, respectively. The proposed empirical equations of the settlements and the horizontal displacements according to embankment on the marine sedimentary ground may be applied to the site where has a similar condition of study area.

Analysis of PVD Degree of Consolidation with Various Core Types (코어형태에 따른 연직배수재의 압밀도 분석)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Zhanara, Nazarova
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • Recently, the demand for industrial and residental land are increasing with economic growth, but it is difficult to acquire areas for development with good ground condition. For efficient and balanced development of land, new development projects are being carried out not only the areas with inland but those with the soft ground as well. As soft grounds have complex engineering properties and high variations such as ground subsidence especially when their strength is low and depth is deep, we need to accurately analyze the engineering properties of soft grounds and find general measures for stable and economic design and management. Vertical drain technology is widely used to accelerate the consolidation of soft clay deposits and dredged soil under pre-loading and various types of vertical drain are used with there discharge capacity. Under field conditions, discharge capacity is changed with various reason, such as soil condition, confinement pressure, long-term clogging and folding of vertical drains and so on. Therefore, many researcher and engineer recommend the use of required discharge capacity. In this paper, the experiment study were carried out to obtain the discharge capacity of six different types of vertical drains by utilizing the large-scale model tests and discharge capacity, degree of consolidation with the time elapsed.

  • PDF

Integrated Genetic Algorithm with Direct Search for Optimum Design of RC Frames (직접탐색을 이용한 유전자 알고리즘에 의한 RC 프레임의 최적설계)

  • Kwak, Hyo-Gyoung;Kim, Ji-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.21-34
    • /
    • 2008
  • An improved optimum design method for reinforced concrete frames using integrated genetic algorithm(GA) with direct search method is presented. First, various sets of initially assumed sections are generated using GA, and then, for each resultant design member force condition optimum solutions are selected by regression analysis and direct search within pre-determined design section database. In advance, global optimum solutions are selected from accumulated results through several generations. Proposed algorithm makes up for the weak point in standard genetic algorithm(GA), that is, low efficiency in convergence causing the deterioration of quality of final solutions and shows fast convergence together with improved results. Moreover, for the purpose of elevating economic efficiency, optimum design based on the nonlinear structural analysis is performed and therefore makes all members resist against given loading condition with the nearest resisting capacity. The investigation for the effectiveness of the introduced design procedure is conducted through correlation study for example structures.

Estimation of Structural Strength for Spudcan in the Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 스퍼드캔 구조강도 예측법)

  • Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.141-152
    • /
    • 2022
  • As interest increases related to the development of eco-friendly energy, the offshore wind turbine market is growing at an increasing rate every year. In line with this, the demand for an installation vessel with large scaled capacity is also increasing rapidly. The wind turbine installation vessel (WTIV) is a fixed penetration of the spudcan in the sea-bed to install the wind turbine. At this time, a review of the spudcan is an important issue regarding structural safety in the entire structure system. In the study, we analyzed the current procedure suggested by classification of societies and new procedures reflect the new loading scenarios based on reasonable operating conditions; which is also verified through FE-analysis. The current procedure shows that the maximum stress is less than the allowable criteria because it does not consider the effect of the sea-bed slope, the leg bending moment, and the spudcan shape. However, results of some load conditions as defined by the new procedure confirm that it is necessary to reinforce the structure to required levels under actual pre-load conditions. Therefore, the new procedure considers additional actual operating conditions and the possible problems were verified through detailed FE-analysis.

A study on the settlement of earth dam by the changes of the density (흙댐의 밀도변화에 의한 압밀침하에 대한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.3
    • /
    • pp.89-98
    • /
    • 1986
  • This study was carried out for the settlement and camber of earth dam by the changes of the density. The testing material was taken five kinds of Soil used as banking material and it was compacted by 100, 95, 90, 85 and 80% compaction degree. The results of the settlement of earth dam whose height ranges from 10m to 50m are as follows. 1.The more the fine particle (n) increases, the higher the liquid limit (WL) and the lower the dry density (rd) becomes as follows; rd=2. 22-0. 0052n (gr/cm$_3$) rd=2. 394-0. 0164WL rd=2. 185-(5. 8n-2. 5WL)X10-$_3$ 2. The higher the optimum moisture content (Wo) becomes, the lower the density becomes as follows; rt,=2. 68-0. 028Wo rd=2. 578-0. 04Wo 3. 3.Most of the consolidation occurs immediately by loading and the more the fine particle increases, the lower the coefficient of consolidation becomes. 4.The more the fine particle increases and lower the compaction degree (D) becomes,the lower the pre-consolidation load (Pc) becomes but on the contrary the compression index (Cc) becomes higher. Those equation is as follows. Pc=3. 32-(4. 3n-3. 0D) X10-2 (kg/cm$^2$) Cc=0. 41+(1. 33n-4. 44D) X10-$^3$ 5.The more the consolidation load (P) increases, the lower the coefficient of volume change (mv) becomes with mv=ap-b, the higher the consolidation ratio (u) becomes with U= (0. 6~1. 35)PO.4 6.The more the fine particle (n) increases, the more the settlement of dam occurs with U=anb and 60-80% of the settlement occurs under construction. 7.The camber of dam has higher value in condition that has more fine particle, poorer compaction and higher height of dam. In the dam construction about twice value of table 7 is required for dam safety.

  • PDF

LIDMOD Development for Evaluating Low Impact Development and Its Applicability to Total Maximum Daily Loads (지속가능한 도시개발을 위한 LID평가모델(LIDMOD)개발과 수질오염총량제에 대한 적용성 평가)

  • Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Tae Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • Low impact development (LID) technique is relatively new concept to reduce surface runoff and pollutant loading from land cover by attempting to match predevelopment condition with various integrated management practices (IMPs). In this study, computational model for designing and evaluating LID, named LIDMOD, was developed based on SCS-CN method and applied at Andong bus terminal to evaluate LID applicapability and design retention/detention area for volume or peak flow control. LIDMOD simulated with 21 years simulation period that yearly surface runoff by post-development without LID was significantly higher than that with LID showing about 2.8 times and LID could reduce efficiently yearly surface runoff with 75% reduction of increased runoff by conventional post development. LIDMOD designed detention area for volume/peak flow control with 20.2% of total area by hybrid design. LID can also efficiently reduce pollutant load from land cover. Pollutant loads from post-development without LID was much higher than those from pre-development with showing 37 times for BOD, 2 times for TN, and 9 times for TP. Pollutant loads from post-development with LID represented about 57% of those without LID. Increasing groundwater recharge reducing cooling and heating fee, creating green refuge at building area can be considered as additional benefits of LID. At the point of reducing runoff and pollutant load, LID might be important technique for Korean TMDL and LIDMOD can be useful tool to calculate unit load for the case of LID application.

A model to develop the porosity of concrete as important mechanical property

  • Alyousef, Rayed;Alabduljabbar, Hisham;Mohamed, Abdeliazim Mustafa;Alaskar, Abdulaziz;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.147-156
    • /
    • 2020
  • This numerical study demonstrates the porosity conditions and the intensity of the interactions with the aggressive agents. It is established that the density as well as the elastic modulus are correlated to ultrasonic velocity The following investigation assessed the effects of cement grade and porosity on tensile strength, flexural and compressive of Ultra High Performance Concrete (UHPC) as a numerical model in PLAXIS 2d Software. Initially, the existing strength-porosity equations were investigated. Furthermore, comparisons of the proposed equations with the existing models suggested the high accuracy of the proposed equations in predicting, cement grade concrete strength. The outcome obtained showed a ductile failure when un-corroded reinforced concrete demonstrates several bending-induced cracks transfer to the steel reinforcement. Moreover, the outcome also showed a brittle failure when wider but fewer transverse cracks occurred under bending loads. Sustained loading as well as initial pre-cracked condition during the corrosion development have shown to have significant impact on the corrosion behavior of concrete properties. Moreover, greater porosity was generally associated with lower compressive, flexural, and tensile strength. Higher cement grade, on the other hand, resulted in lower reduction in concrete strength. This finding highlighted the critical role of cement strength grade in determining the mechanical properties of concrete.

Software-based Encryption Pattern Bootstrap for Secure Execution Environment (보안 실행 환경을 위한 소프트웨어 기반의 암호화 패턴 부트스트랩)

  • Choi, Hwa-Soon;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.389-394
    • /
    • 2012
  • Most current systems have ignored security vulnerability concerned with boot firmware. It is highly likely that boot firmware may cause serious system errors, such as hardware manipulations by malicious programs or code, the operating system corruption caused by malicious code and software piracy under a condition of no consideration of security mechanism because boot firmware has an authority over external devices as well as hardware controls. This paper proposed a structural security mechanism based on software equipped with encrypted bootstrap patterns different from pre-existing bootstrap methods in terms of securely loading an operating system, searching for malicious codes and preventing software piracy so as to provide reliability of boot firmware. Moreover, through experiments, it proved its superiority in detection capability and overhead ranging between 1.5 % ~ 3 % lower than other software security mechanisms.

Evaluation of the Roadbed Behavior During Tilting-train Operation in Curved Track Using Numerical Analysis (틸팅차량의 곡선부 운행시 수치해석을 이용한 노반거동 평가)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.115-126
    • /
    • 2007
  • The tilting-train is very attractive to the railroad users in the world because it runs with high speed in curved track using pre-existing infrastructure. The tilting-train has a unique allowable speed and mechanism expecially in curved track. Therefore, it should be evaluated in terms of the stability of the train operation and roadbed. In this study, when the tilting-train is being operated with the allowable speed, the behavior of the roadbed is evaluated by examining the settlement and bearing capacity of the roadbed. Additionally, the stability of the roadbed is estimated in the condition of soft roadbed influenced by the weather effects and cyclic train loading. The numerical results show that the roadbed settlements satisfy the allowable settlement when Young's moduli of the upper roadbed and in-situ soil are more than $2,300t/m^2\;and\;3,300t/m^2$, respectively, in the continuous welded rail (CWR) and $3,800t/m^2\;and\;4,600t/m^2$, respectively, in the rail joint.