• Title/Summary/Keyword: pre-fabrication

Search Result 212, Processing Time 0.026 seconds

Fabrication of High Precision Pre-amplifier for EEG Signal Measurement and Development of Auto Classification System (뇌파신호 측정을 위한 고성능 전치증폭기 제작 및 자동 신호분류 시스템 개발)

  • 도영수;장긍덕;남효덕;장호경
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.409-412
    • /
    • 2000
  • A high performance EEG signal measurement system is fabricated. It consists of high precision pre-amplifier and auto identification bandwidth unit. High precision pre-amplifier is composed of signal generator, signal amplifier with a impedance converter, body driver and isolation amplifier. The pre-amplifier is designed for low noise characteristics, high CMRR, high input impedance, high IMRR and safety, Auto identification bandwidth unit is composed of AD-converter and PIC micro-controller for real time processing EEG signal. The performance of EEG signal measurement system has been shown the classified bandwidth through the clinical demonstrations.

  • PDF

A Study on the By-Pass Type Mass Flow Controller (분류세관식 유량제어장치의 설계에 관한 연구)

  • Choe, Tae-Min
    • 연구논문집
    • /
    • s.22
    • /
    • pp.85-96
    • /
    • 1992
  • A mass flow controller(MFC) is commonly used in the semiconductor industries to control the flow rate of various process gases. The measurement and precise control of the of flow rate the gas are the key for a succesful IC fabrication. To eventually design a reliable MFC, a pre-proto type MFC was built and its flow characteristics were investigated. Most of the functional components of the pre-proto type were built for the present study, but the remainder were adopted from a commercial unit. The flow control characteristics were compared with that of a standard MFC. Major dimensions of an MFC for 0-10 SLM capacity were suggested.

  • PDF

Investigation into direct fabrication of nano-patterns using nano-stereolithography (NSL) process (나노 스테레오리소그래피 공정을 이용한 무(無)마스크 나노 패턴제작에 관한 연구)

  • Park Sang Hu;Lim Tae-Woo;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.156-162
    • /
    • 2006
  • Direct fabrication of nano patterns has been studied employing a nano-stereolithography (NSL) process. The needs of nano patterning techniques have been intensively increased for diverse applications for nano/micro-devices; micro-fluidic channels, micro-molds. and other novel micro-objects. For fabrication of high-aspect-ratio (HAR) patterns, a thick spin coating of SU-8 process is generally used in the conventional photolithography, however, additional processes such as pre- and post-baking processes and expansive precise photomasks are inevitably required. In this work, direct fabrication of HAR patterns with a high spatial resolution is tried employing two-photon polymerization in the NSL process. The precision and aspect ratio of patterns can be controlled using process parameters of laser power, exposure time, and numerical aperture of objective lens. It is also feasible to control the aspect ratio of patterns by truncation amounts of patterns, and a layer-by-layer piling up technique is attempted to achieve HAR patterns. Through the fabrication of several patterns using the NSL process, the possibility of effective patterning technique fer various N/MEMS applications has been demonstrated.

Recent Progress of the DUPIC Fuel Fabrication in Korea

  • Lee, J.W.;Kim, W.K.;Lee, Jae-W.;Park, G.I.;YANG, M.S.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.170-181
    • /
    • 2004
  • DUPIC powder and pellets were successfully fabricated in accordance with the quality assurance program described in the Quality Assurance Manual for DUPIC fuel fabrication, which was developed on the basis of the CAN3-Z299.2-85 standard. This manual describes the quality management system applicable to the activities performed for DUPIC fuel fabrication. It covers the work processes, policies and procedures used for planning, executing, and verifying the work carried out for DUPIC fuel fabrication. It is important that a Quality Program is in place before the fabrication of the fuel for irradiation testing. In order to qualify the DUPIC pellet manufacturing processes, 3 series of experiments for the pre-qualification and 3 series for the qualification were performed. In these experiments, the optimum process conditions were established. Then, under the control of the QA program, 8 series of production runs were performed to make the qualified DUPIC pellets in a batch size of 1 kg. In these production runs, DUPIC fuel pellets satisfying the standard CANDU fuel pellet specifications could be successfully produced.

  • PDF

Use of temporary filling material for index fabrication in Class IV resin composite restoration

  • Kim, Kun-Young;Kim, Sun-Young;Kim, Duck-Su;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.2
    • /
    • pp.85-89
    • /
    • 2013
  • When a patient with a fractured anterior tooth visits the clinic, clinician has to restore the tooth esthetically and quickly. For esthetic resin restoration, clinician can use 'Natural Layering technique' and an index for palatal wall may be needed. In this case report, we introduce pre-restoration index technique on a Class IV defect, in which a temporary filling material is used for easy restoration. Chair-side index fabrication for Class IV restoration is convenient and makes a single-visit treatment possible.

A Study on Joint Tracking for Multipass Arc Welding using Vision Sensor (비전 센서를 이용한 다층 아크 용접에서 용접선 추적에 관한 연구)

  • 이정익;장인선;이세현;엄기원
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.85-94
    • /
    • 1998
  • Welding fabrication invariantly involves three district sequential steps: preparation, actual process execution and post-weld inspection. One of the major problems in automating these steps and developing autonomous welding system, is the lack of proper sensing strategies. Conventionally, machine vision is used in robotic arc welding only for the correction of pre-taught welding paths in single pass. In this paper, developed vision processing techniques are detailed, and their application in welding fabrication is covered. The software for joint tracking system is finally proposed.

  • PDF

Modularization of plant structures (플랜트 구조물의 모듈화 공법)

  • Seo, Han Seol;Chang, Sang Soo
    • Plant Journal
    • /
    • v.13 no.3
    • /
    • pp.30-35
    • /
    • 2017
  • Module can be categorized as PAS(Pre-Assembled Steel structure), PAR(Pre-Assembled pipe Rack), PAU(Pre-Assembled Unit), VAU(Vendor Assembled Unit) and VPU(Vendor Package Unit). At the stage of design and fabrication of module, the condition of land and ocean transportation is considered and these conditions are reflected on the module division design. The control of the module's center of gravity is important to transport and install modules safely and the steel structure should have the strength enough to resist the sea acceleration force during the ocean transportation. The transportation condition and the installation method influence the size and weight of module. The size and weight of module are considered for the design of module division.

  • PDF

Fabrication of SiCN microstructures for super-high temperature MEMS using photopolymerization and its characteristics (광중합에 의한 초고온 MEMS용 SiCN 미세구조물 제작과 그 특성)

  • Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.148-152
    • /
    • 2006
  • This paper describes the fabrication of SiCN microstructures for super-high temperature MEMS using photopolymerization of pre-ceramic polymer. In this work, polysilazane liquide as a precursor was deposited on Si wafers by spin coating, microstructured and solidificated by UV lithography, and removed from the substrate. The resulting solid polymer microstructures were cross-linked under HIP process and pyrolyzed to form a ceramic of withstanding over $1400^{\circ}C$. Finally, the fabricated SiCN microstructures were annealed at $1400^{\circ}C$ in a nitrogen atmosphere. Mechanical characteristics of the SiCN microstructure with different fabrication process conditions were evaluated. The elastic modules, hardness and tensile strength of the SiC microstructure implemented under optimum process condtions are 94.5 GPa, 10.5 GPa and 11.7 N/min, respectively. Consequently, the SiCN microstructure proposed in this work is very suitable for super-high temperature MEMS application due to very simple fabrication process and the potential possiblity of sophisticated mulitlayer or 3D microstructures as well as its good mechanical properties.

Fabrication of a Brain Model using the Adaptive Slicing Technique (적응단면기법을 이용한 뇌모형제작)

  • Yeom, Sang-Won;Um, Tai-Joon;Joo, Yung-Chul;Kim, Seung-Woo;Kong, Yong-Hae;Chun, In-Gook;Bang, Jae-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.485-490
    • /
    • 2003
  • RP(Rapid Prototyping) has been used in the various industrial applications. This paper presents the optimization techniques fur fabricated 3D model design using RP machine for the medical field. Once the original brain model data are obtained from 2D slices of MRI/CT machine, the data can be modeled as an optimal ellipse. The objective of this study includes optimization of fabrication time and surface roughness using the adaptive slicing method. It can reduce fabrication time without losing surface roughness quality by accumulating the slices with variable thickness. According to the parameter tuning and synthesis of its effect, more suitable parameter values can be obtained by enhanced 3D brain model fabrication. Therefore, accurate 3D brain model fabricated by RP machine can enable a surgeon to perform pre-operation. to make a decision for the operation sequence and to perceive the 3D positions in prototype, before delicate operation of actual surgery.

Fabrication of SiCN Microstructures for Super-High Temperature MEMS and Its Characteristics (초고온 MEMS용 SiCN 미세구조물 제작과 그 특성)

  • Lee, Gyu-Chul;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.392-393
    • /
    • 2006
  • This paper describes the fabrication of SiCN microstructures for super-high temperature MEMS using photopolymerization of pre-ceramic polymer. In this work. polysilazane liquide as a precursor was deposited on Si wafers by spin coating. microstructured and solidificated by UV lithography. and removed from the substrate. The resulting solid polymer microstructures were cross-linked under HIP process and pyrolyzed to form a ceramic of withstanding over $1400^{\circ}C$. Finally, the fabricated SiCN microstructures were annealed at $1400^{\circ}C$ in a nitrogen atmosphere. Mechanical characteristics of the SiCN microstructure with different fabrication process conditions were evaluated. The elastic modules. hardness and tensile strength of the SiC microstructure implemented under optimum process conditions are 94.5 GPa, 10.5 GPa and 11.7 N/min, respectively. Consequently, the SiCN microstructure proposed in this work is very suitable for super-high temperature MEMS application due to very simple fabrication process and the potential possiblity of sophisticated multlayer or 3D microstructures as well as its good mechanical properties.

  • PDF