DOI QR코드

DOI QR Code

Fabrication of SiCN microstructures for super-high temperature MEMS using photopolymerization and its characteristics

광중합에 의한 초고온 MEMS용 SiCN 미세구조물 제작과 그 특성

  • 정귀상 (울산대학교 전기전자정보시스템공학부)
  • Published : 2006.03.31

Abstract

This paper describes the fabrication of SiCN microstructures for super-high temperature MEMS using photopolymerization of pre-ceramic polymer. In this work, polysilazane liquide as a precursor was deposited on Si wafers by spin coating, microstructured and solidificated by UV lithography, and removed from the substrate. The resulting solid polymer microstructures were cross-linked under HIP process and pyrolyzed to form a ceramic of withstanding over $1400^{\circ}C$. Finally, the fabricated SiCN microstructures were annealed at $1400^{\circ}C$ in a nitrogen atmosphere. Mechanical characteristics of the SiCN microstructure with different fabrication process conditions were evaluated. The elastic modules, hardness and tensile strength of the SiC microstructure implemented under optimum process condtions are 94.5 GPa, 10.5 GPa and 11.7 N/min, respectively. Consequently, the SiCN microstructure proposed in this work is very suitable for super-high temperature MEMS application due to very simple fabrication process and the potential possiblity of sophisticated mulitlayer or 3D microstructures as well as its good mechanical properties.

Keywords

References

  1. G. S. Chung, 'Thin SOI structures for sensing and integrated circuit applications', Sensors & Actuators A, vol. 39, pp. 241-251, 1993 https://doi.org/10.1016/0924-4247(93)80226-7
  2. P. M. Sarro, 'Silicon carbide as a new MEMS technology', Sensors & Actuators A, vol. 82, pp. 210-218, 2000 https://doi.org/10.1016/S0924-4247(99)00335-0
  3. Y. T. Yang, K. L. Ekinci, X. M. H. Huang, L. M. Schiavone, and M. L. Roukes, 'Monocrystalline silicon carbide nanoelectromechanical systems', Appl. Phys. Lett.; vol. 78, no. 2, pp. 165-167, 2001 https://doi.org/10.1063/1.1339262
  4. G. S. Chung and R. Maboudian, 'Bonding characteristics of 3C-SiC wafers with hydrofluoric acid for high-temperature MEMS applications', Sensors & Actuators A, vol. 119, pp. 599-604, 2005 https://doi.org/10.1016/j.sna.2004.10.004
  5. R. Riedel, L. M. Ruwisch, L. An, and R. Raj, 'Amorphous silicoboron carbon-nitride ceramics with anomalously high resistance to creep', J. Amer. Ceram. Soc., vol. 81, pp. 3341-3344, 1998 https://doi.org/10.1111/j.1151-2916.1998.tb02780.x
  6. R. Raj, L. An, S. Shah, and R. Riedel, 'Oxidation kinetics of amorphous silicon carbonitride ceramics', J. Amer. Ceram. Soc., vol. 84, pp. 1803-1810, 2001 https://doi.org/10.1111/j.1151-2916.2001.tb00918.x
  7. E. Kroke, Y. L. Li, C. Konetschny, E. Lecomte, C. Fasel, and R. Riedel, 'Sliazane derived ceramics and related materials', Materials Sic. & Eng., vol. 26, pp. 97-199, 2000 https://doi.org/10.1016/S0927-796X(00)00008-5
  8. M. A. Schiavon, G. D. Soraru, I. Valeria, and P. Yoshida, 'Synthesis of a polycyclic silazane network and its evolution to silicon carbonitride glass', J. of Non-Crystalline Solids, vol. 304, pp. 76-83, 2002 https://doi.org/10.1016/S0022-3093(02)01007-4
  9. E. Kroke, Y. L. Li, C. Konetschny, E. Lecomte, C. Fasel, and R. Riedel, 'Sliazane derived ceramics and related materials', Materials Sic. & Eng., vol. 26, pp. 97-199, 2000 https://doi.org/10.1016/S0927-796X(00)00008-5
  10. 김재현, 이학주, 최병익, '나노 임프린트 공정에서의 기계적 물성 측정', 한국정밀공학회지, vol. 21, no. 6, pp. 7-14, 2004
  11. R. Raj, L. An, S. Shah, and R. Riedel, 'Oxidation kinetics of amorphous silicon carbonitride ceramics', J. Amer. Ceram. Soc., vol. 84, pp. 1803-1810, 2001 https://doi.org/10.1111/j.1151-2916.2001.tb00918.x
  12. M. A. Schiavon, G. D. Soraru, I. Valeria, and P. Yoshida, 'Synthesis of a polycyclic silazane network and its evolution to silicon carbonitride glass', J. of Non-Crystalline Solids, vol. 304, pp. 76-83, 2002 https://doi.org/10.1016/S0022-3093(02)01007-4