• Title/Summary/Keyword: pre-existing structures

Search Result 101, Processing Time 0.024 seconds

Experimental Analysis on the Criteria of the Explosion Damage for One-way RC Slabs (일방향 철근 콘크리트 슬래브의 폭발 피해 기준에 대한 실험적 분석)

  • Lee, Seung Jae;Park, Jong Yil;Lee, Young Hak;Kim, Hie Sik
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.68-74
    • /
    • 2017
  • To predict the damage of Reinforced Concrete (RC) structures from mass explosion, Pressure-Impulse (P-I) curves representing the relationship between peak pressure and impulse based on damage criteria are essential. There are P-I curves developed by the U.S. DoD without detailed explanation regarding validation. In this study, full scale explosion tests were conducted measuring response of RC slab to modify and validate pre-existing P-I curves. Four same RC slabs were prepared, and placed at different distances, which are fixed to steel frame with concrete base. Scaled distances were selected to show different failure types using P-I curve based on Single Degree Of Freedom (SDOF) model. It was found that SDOF model can be used to evaluate and identify one-way RC slab damage with difference damage criteria.

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

Chemical Structural Approach to Understand Global Prohibition on Perfluorinated Compounds and their Uses (과불화합물의 규제 및 산업적 용도에 대한 화학구조적 고찰)

  • Choe, Eun Kyung;Ra, Jinsung;Cho, Young Dal;Song, Ki Bong;Lee, Suyeong;Seok, Gwangseol
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.134-155
    • /
    • 2016
  • Perfluorinated chemicals are highly diverse and widely used. More than 160 substances are pre-registered under REACH and approximately 140 substances are in the existing chemicals list of Korea from this chemical group. Chemical structures of PFCs that are globally prohibited and still in uses are identified with OECD's classification of PFCs with an overall review on their uses in consumer products including textile products. Case examples for current domestic situation on use of PFCs as a major component of water-repelling agents in textile products as well as a brief summary of eight major PFC manufacturers' situation are presented from our survey study along the supply chains and the most recent report of EPA stewardship programme, respectively.

Microphase Separation and Crystallization in Binary Blends Consisting of Poly (methyl methacrylate)-block-Polystyrene Copolymer and Poly (vinylidene fluoride) (폴리(메틸 메타크릴레이트)-폴리스티렌 이종 블록 공중합체/폴리(비닐리덴 플루오라이드) 블렌드의 미세 상분리와 결정화)

  • 김지선;이광희;조성무;류두열;김진곤
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.509-518
    • /
    • 2004
  • Microdomain structures and crystallization behavior of the binary blends consisting of an asymmetric block copolymer and a homopolymer were investigated using small-angle X-ray scattering (SAXS), optical micro scope (OM) and differential scanning calorimetry (DSC). Poly(methyl methacrylate)-block-polystyrene block copolymer (PMMA-b-PS) (weight fraction of PMMA =0.53) was mixed with low molecular weight poly(vinylidene fluoride) (PVDF). As the PVDF concentration was increased, the morphological change from a lamellar to a cylindrical structure occurred. The crystallization of PVDF significantly disturbed the orientation of the pre-existing microdomain structure, resulting in a poorly ordered morphology. In the blends, PVDF exhibited unique crystallization behavior due to the PMMA block which is preferentially miscible to PVDF and the space constraint imposed by the microdomains.

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

Removal of the Ambiguity of Images by Normalization and Entropy Minimization and Edge Detection by Understanding of Image Structures (정규화와 엔트로피의 최소화에 의한 영상 경계의 애매성 제거 및 영상 구조 파악에 의한 경계선 추출)

  • Jo, Dong-Uk;Baek, Seung-Jae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2558-2562
    • /
    • 1999
  • This paper proposes on the methods of noise removal and edge extraction which is done by eliminating the ambiguities of the image using normalization and minimizing the entropy. Pre-existing methods have their own peculiarities and limitations, such as gray level distributions change very slowly or two regions which having similar gray level distribution are touched. This affects on the post processing such as feature extraction, as a result, this leads to false-recognition or no-recognition. Therefore, this paper proposes on the methods which overcome these problems. Finally, the effectiveness of this paper is demonstrated by several experiments.

  • PDF

DEVELOPMENT OF CONCRETE FILLED TUBE AS A PILLAR PILE FOR TOP DOWN METHOD

  • Jee-Yun Song;Hong-Chul Rhim;Seung-Weon Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.808-813
    • /
    • 2009
  • Top-down method is widely used for urban area construction for its advantages in reducing environmental problems such as dust and noise, and saving construction cost depending on given conditions of a construction site. Because the excavation and construction of super- and sub-structures of the building have to be proceeded simultaneously, a column has to be embedded prior to excavation. This column is called a pillar column or pre-founded column. Usually a wide flange section is used for these columns. To place the columns, usually the diameter of casing holes needs to be larger than the section of the wide flange itself in order to accommodate a couple of tremie pipes for pouring concrete. In this paper, a newly developed method of using circular pipe as an alternative to the existing wide flange section is discussed. The crucial part of the new method is to develop a connection between the circular column and concrete flat slabs. For shear force transfer from concrete slab to the concrete filled tube (CFT) column, shear jackets with studs and shear bands are proposed. The studs are welded on the jackets at shop and placed around the circular column on site. The shear bands are welded on the outer side of the CFT at shop and inserted into ground with the CFT. Test results and application of the method to a construction site are also provided in this paper.

  • PDF

A central facility concept for nuclear microreactor maintenance and fuel cycle management

  • Faris Fakhry;Jacopo Buongiorno;Steve Rhyne;Benjamin Cross;Paul Roege;Bruce Landrey
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.855-865
    • /
    • 2024
  • Commercial deployment of nuclear microreactors presents an opportunity for the industry to rethink its approach to manufacturing, siting, operation and maintenance, and fuel cycle management as certain principles used in grid-scale nuclear projects are not applicable to a decentralized microreactor economy. The success of this nascent industry is dependent on its ability to reduce infrastructure, logistical, regulatory and lifecycle costs. A utility-like 'Central Facility' that consolidates the services required and responsibilities borne by vendors into one or a few centralized locations will be necessary to support the deployment of a fleet of microreactors. This paper discusses the requirements for a Central Facility, its implications on the cost structures of owners and suppliers of microreactors, and the impact of the facility for the broader microreactor industry. In addition, this paper discusses the pre-requisites for eligibility as well as the opportunities for a Central Facility host site. While there are many suitable locations for such a capability across the U.S., this paper considers a facility co-located with the Vogtle Nuclear Power Plant and Savannah River Sites to illustrate how a Central Facility can leverage the existing infrastructure and stimulate a local ecosystem.

Seismic performance enhancement of a PCI-girder bridge pier with shear panel damper plus gap: Numerical simulation

  • Andika M. Emilidardi;Ali Awaludin;Andreas Triwiyono;Angga F. Setiawan;Iman Satyarno;Alvin K. Santoso
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.69-82
    • /
    • 2024
  • In the conventional seismic design approach for a bridge pier, the function of the stopper, and shear key are to serve as mechanisms for unseating prevention devices that retain and transmit the lateral load to the pier under strong earthquakes. This frequently inflicts immense shear forces and bending moments concentrated at the plastic hinge zone. In this study, a shear panel damper plus gap (SPDG) is proposed as a low-cost alternative with high energy dissipation capacity to improve the seismic performance of the pier. Therefore, this study aimed to investigate the seismic performance of the pre-stressed concrete I girder (PCI-girder) bridge equipped with SPDG. The bridge structure was analyzed using nonlinear time history analysis with seven-scaled ground motion records using the guidelines of ASCE 7-10 standard. Consequently, the implementation of SPDG technology on the bridge system yielded a notable decrease in maximum displacement by 41.49% and a reduction in earthquake input energy by 51.05% in comparison to the traditional system. This indicates that the presence of SPDG was able to enhance the seismic performance of the existing conventional bridge structure, enabling an improvement from a collapse prevention (CP) level to an immediate occupancy (IO).

A model to develop the porosity of concrete as important mechanical property

  • Alyousef, Rayed;Alabduljabbar, Hisham;Mohamed, Abdeliazim Mustafa;Alaskar, Abdulaziz;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.147-156
    • /
    • 2020
  • This numerical study demonstrates the porosity conditions and the intensity of the interactions with the aggressive agents. It is established that the density as well as the elastic modulus are correlated to ultrasonic velocity The following investigation assessed the effects of cement grade and porosity on tensile strength, flexural and compressive of Ultra High Performance Concrete (UHPC) as a numerical model in PLAXIS 2d Software. Initially, the existing strength-porosity equations were investigated. Furthermore, comparisons of the proposed equations with the existing models suggested the high accuracy of the proposed equations in predicting, cement grade concrete strength. The outcome obtained showed a ductile failure when un-corroded reinforced concrete demonstrates several bending-induced cracks transfer to the steel reinforcement. Moreover, the outcome also showed a brittle failure when wider but fewer transverse cracks occurred under bending loads. Sustained loading as well as initial pre-cracked condition during the corrosion development have shown to have significant impact on the corrosion behavior of concrete properties. Moreover, greater porosity was generally associated with lower compressive, flexural, and tensile strength. Higher cement grade, on the other hand, resulted in lower reduction in concrete strength. This finding highlighted the critical role of cement strength grade in determining the mechanical properties of concrete.