• Title/Summary/Keyword: pre-damage

Search Result 603, Processing Time 0.027 seconds

Integrated urban resilience framework: A comprehensive approach to pre- and post-disaster assessment for earthquake risk reduction

  • Ayse E. Ozsoy Ozbay;Isil Sanri Karapinar;Huseyin C. Unen
    • Structural Engineering and Mechanics
    • /
    • v.92 no.2
    • /
    • pp.197-206
    • /
    • 2024
  • In this study, a unified framework that integrates pre- and post-earthquake assessments of buildings was proposed to enhance urban disaster preparedness through the coordination of pre- and post- earthquake efforts. Within this framework, a case study based on the 2023 Kahramanmaraş Earthquake was performed comparing the distribution of seismic risk prioritization for 117 reinforced concrete buildings with their actual damage states observed during post-earthquake field inspections. In order to conduct pre-earthquake evaluation process, street-level images were employed using two different rapid visual screening methods. With the use of generated geospatial database enabling the efficient and reliable transmission of the data between both stages of the assessment procedures, the alignment and validation of pre- and post-earthquake evaluations of the buildings were achieved enhancing the coordination of seismic risk management strategies. By implementing the proposed joint framework in this study, an extensive seismic vulnerability evaluation on an urban scale could be achieved by optimizing the computational demands, cost and time required for the strategic planning activities.

Shear induced damage of red blood cells monitored by the decrease of their deformability

  • Lee, Sung Sik;Ahn, Kyung Hyun;Lee, Seung Jong;Sun, Kyung;Goedhart, Petrus T.;Hardeman, Max. R.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.141-146
    • /
    • 2004
  • Shear-induced damage of Red Blood Cell (RBC) is an imminent problem to be solved for the practical application of artificial organs in extra corporeal circulation, as it often happens and affects physiological homeostasis of a patient. To design and operate artificial organs in a safe mode, many investigations have been set up to correlate shear and shear-induced cell damage. Most studies were focused on hemolysis i.e. the extreme case, however, it is important as well to obtain a clear understanding of pre-hemolytic mechanical damage. In this study, the change in deformability of RBC was measured by ektacytometry to investigate the damage of RBC caused by shear. To a small magnitude of pre-shear, there is little difference, but to a large magnitude of pre-shear, cell damage occurs and the effect of shear becomes significant depending on both the magnitude and imposed time of shearing. The threshold stress for cell damage was found to be approximately 30 Pa, which is much less than the threshold of mechanical hemolysis but is large enough to occur in vitro as in the extra corporeal circulation during open-heart surgery or artificial heart. In conclusion, it was found and suggested that the decrease of deformability can be used as an early indication of cell damage, in contrast to measuring plasma hemoglobin. As cell damage always occurs during flow in artificial organs, the results as well as the approach adopted here will be helpful in the design and operation of artificial organs.

Retrofitting of RC girders using pre-stressed CFRP sheets

  • Bansal, Prem Pal;Sharma, Raju;Mehta, Ankur
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.833-849
    • /
    • 2016
  • Pre-stressing of existing structures using steel cables, FRP cables or FRP laminates has been successfully tried in the past. Retrofitting of beams using pre-stressed laminates does not utilize the full strength of the FRP due to de-bonding of the laminates before the fibre fracture. In the present study attempt has been made to overcome this problem by replacing the FRP laminates by the FRP sheets. In the present paper the effect of initial damage level and pre-stress level on strength, stiffness, cracking behaviour and failure mode of girders retrofitted using pre-stressed CFRP sheets has been studied. The results indicate that rehabilitation of initially damaged girders by bonding pre-stressed CFRP sheets improves the flexural behaviour of beams appreciably. However, it has been observed that with increase in pre-stressing force the load carrying capacity of the girders increases up to a particular level up to which the mode of failure is fibre fracture. Thereafter, the mode of failure shifts from fibre fracture to de-bonding and there is no appreciable increase in load carrying capacity with further increase in pre-stressing force.

A Study on the Microscopic Damage Behavior and the Damage Position Evaluation of TiNi/Al6061 Share Memory Alloy Composite (TiNi/A16061 형상기억복합재료의 미시적 손상거동과 손상위치측정에 관한 연구)

  • Lee, Jin-Gyeong;Park, Yeong-Cheol;Gu, Hu-Taek;Lee, Gyu-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1787-1794
    • /
    • 2002
  • TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in the matrix using shape memory effect. In order to generate compressive residual stress in TiNi/Al6061 shape memory alloy(SMA) composite, 1, 3 and 5% pre-strains were applied to the composite in advance. It was also evaluated the effect of compressive residual stress corresponding to the pre-strain variation and the volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain in TiNi/Al6061 SMA composite. The results of the microscopic damage evaluation of TiNi/Al6061 SMA composite under various pre-strain using AE technique can be divided into three stage corresponding to the AE signals. AE counts and events were useful parameters to evaluate the fracture mechanism according to the variation of pre-strain. In addition, two dimensional AE source location technique was applied for monitoring the crack initiation and propagation in composite.

Pre-ischemic Treatment with Ampicillin Reduces Neuronal Damage in the Mouse Hippocampus and Neostriatum after Transient Forebrain Ischemia

  • Lee, Kyung-Eon;Kim, Seul-Ki;Cho, Kyung-Ok;Kim, Seong-Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.287-291
    • /
    • 2008
  • Ampicillin, a $\beta$-lactam antibiotic, has been reported to induce astrocytic glutamate transporter-l which plays a crucial role in protecting neurons against glutamate excitotoxicity. We investigated the effect of ampicillin on neuronal damage in the mouse hippocampus and neostriatum following transient global forebrain ischemia. Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral occlusion of the common carotid artery for 40 min. Ampicillin was administered post-ischemically (for 3 days) and/or pre-ischemically (for $3{\sim}5$ days until one day before the onset of ischemia). Pre- and post-ischemic treatment with ampicillin (50 mg/kg/day or 200 mg/kg/day) prevented ischemic neuronal death in the medial CAI area of the hippocampus as well as the neostriatum in a dose-dependent manner. In addition, ischemic neuronal damage was reduced by pre-ischemic treatment with ampicillin (200 mg/kg/day). In summary, our results suggest that ampicillin plays a functional role as a chemical preconditioning agent that protects hippocampal neurons from ischemic insult.

Damage detection for beam structures using an angle-between-string-and-horizon flexibility matrix

  • Yan, Guirong;Duan, Zhongdong;Ou, Jinping
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.643-667
    • /
    • 2010
  • The classical flexibility difference method detects damage by observing the difference of conventional deflection flexibility matrices between pre- and post-damaged states of a structure. This method is not able to identify multiple damage scenarios, and its criteria to identify damage depend upon the boundary conditions of structures. The key point behind the inability and dependence is revealed in this study. A more feasible flexibility for damage detection, the Angle-between-String-and-Horizon (ASH) flexibility, is proposed. The physical meaning of the new flexibility is given, and synthesis of the new flexibility matrix by modal frequencies and translational mode shapes is formulated. The damage indicators are extracted from the difference of ASH flexibility matrices between the pre- and post-damaged structures. One feature of the ASH flexibility is that the components in the ASH flexibility matrix are associated with elements instead of Nodes or DOFs. Therefore, the damage indicators based on the ASH flexibility are mapped to structural elements directly, and thus they can pinpoint the damaged elements, which is appealing to damage detection for complex structures. In addition, the change in the ASH flexibility caused by damage is not affected by boundary conditions, which simplifies the criteria to identify damage. Moreover, the proposed method can determine relatively the damage severity. Because the proposed damage indicator of an element mainly reflects the deflection change within the element itself, which significantly reduces the influence of the damage in one element on the damage indicators of other damaged elements, the proposed method can identify multiple damage locations. The viability of the proposed approach has been demonstrated by numerical examples and experimental tests on a cantilever beam and a simply supported beam.

Experimental study on cyclically-damaged steel-concrete composite joints subjected to fire

  • Ye, Zhongnan;Jiang, Shouchao;Heidarpour, Amin;Li, Yingchao;Li, Guoqiang
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.351-364
    • /
    • 2019
  • Earthquake and fire are both severe disasters for building structures. Since earthquake-induced damage will weaken the structure and reduce its fire endurance, it is important to investigate the behavior of structure subjected to post-earthquake fire. In this paper, steel-concrete composite beam-to-column joints were tested under fire with pre-damage caused by cyclic loads. Beforehand, three control specimens with no pre-damage were tested to capture the static, cyclic and fire-resistant performance of intact joints. Experimental data including strain, deflection and temperature recorded at several points are presented and analyzed to quantify the influence of cyclic damage on fire resistance. It is indicated that the fire endurance of damaged joints decreased with the increase of damage level, mainly due to faster heating-up rate after cyclic damage. However, cracks induced by cyclic loading in concrete are found to mitigate the concrete spalling at elevated temperatures. Moreover, the relationship between fire resistance and damage degree is revealed from experimental results, which can be applied in fire safety design and is worthwhile for further research.

Protection of Paeoniae radix from H2O2-induced oxidative DNA damage

  • Lee, Seung-Cheol;Kwon, Yong-Soo;Heo, Moon-Young
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.282.1-282.1
    • /
    • 2002
  • Paeoniae radix is commonly used for various woman's health problems in traditional korean medicine. In order to develop new antioxidant for woman use. the ethanolic extracts of paeoniae radix (PRE) were prepared and various biological activities were evaluated. PRE showed potent free radical scavenging activity and moderate antioxidative activity in vitro. and also showed the protective effect on H2O2-induced DNA damage in mammalian cell. (omitted)

  • PDF

Analysis of Micro- to Macro-Mechanics in Granitic Rock: Experimental Observation and Theoretical Consideration (화강암질암에 대한 미시적에서 거시적 손상역학의 해석 : 실험 및 이론)

  • Jeong, Gyo-Cheol
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.499-505
    • /
    • 1994
  • Local stress concentrations often cause new micro-damaging induced by a healed pre-existing defects, and the macro-damage is developed by propagation and coalescence of the micro-damage. The micro-damage causes non-linear deformation in rock material. Considerable work has also been applied to describe mathematically the behavior of cracks under stress. Although these mathematical models can usually be made to agree quite well with the measured data, but it is questionable how well the models describe real rock including microcracks in pre-failure state, such as their micro-damage mechanisms. In the present study, micro-damage initiation and propagation in granitic rock under increasing stress were observed directly. Furthermore, a stress analysis considering the bisphere model was carried out using the homogenization theory to analyze the mechanics of the stress-induced micro-damage.

  • PDF

Damage-based stress-strain model of RC cylinders wrapped with CFRP composites

  • Mesbah, Habib-Abdelhak;Benzaid, Riad
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.539-561
    • /
    • 2017
  • In this study, the effects of initial damage of concrete columns on the post-repair performance of reinforced concrete (RC) columns strengthened with carbon-fiber-reinforced polymer (CFRP) composite are investigated experimentally. Four kinds of compression-damaged RC cylinders were reinforced using external CFRP composite wraps, and the stress-strain behavior of the composite/concrete system was investigated. These concrete cylinders were compressed to four pre-damaged states including low -level, medium -level, high -level and total damage states. The percentages of the stress levels of pre-damage were, respectively, 40, 60, 80, and 100% of that of the control RC cylinder. These damaged concrete cylinders simulate bridge piers or building columns subjected to different magnitudes of stress, or at various stages in long-term behavior. Experimental data, as well as a stress-strain model proposed for the behavior of damaged and undamaged concrete strengthened by external CFRP composite sheets are presented. The experimental data shows that external confinement of concrete by CFRP composite wrap significantly improves both compressive strength and ductility of concrete, though the improvement is inversely proportional to the initial degree of damage to the concrete. The failure modes of the composite/damaged concrete systems were examined to evaluate the benefit of this reinforcing methodology. Results predicted by the model showed very good agreement with those of the current experimental program.