• Title/Summary/Keyword: pp fiber

Search Result 347, Processing Time 0.033 seconds

A Study on the Physical Properties of PP/Kenaf Felt Composites According to Kenaf Fiber Compositions (케냐프 섬유 조성에 따른 PP/케냐프 펠트 복합체의 물리적 성질 연구)

  • Ku, Sun Gyo;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.471-476
    • /
    • 2022
  • PP/KF felt was used to load a high content of kenaf fiber (KF) into polypropylene (PP), and polyurethane (PU) was used as a binder. In order to find an optimum composition ratio of the PU binder, the flexural strength of the PP/KF/PU felt composite according to the isocyanate and polyol ratio was evaluated. PP-g-MAH grafted with maleic anhydride (MAH) was applied as a compatibilizer. Tensile, flexural, and impact properties were evaluated to consider changes in mechanical properties of the PP/KF/PU felt composite, and the properties were improved.

Fire resistance of hybrid fiber reinforced SCC: Effect of use of polyvinyl-alcohol or polypropylene with single and binary steel fiber

  • Kazim Turk;Ceren Kina;Esma Balalan
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • This study presents the experimental results performed to evaluate the effects of Polyvinyl-alcohol (PVA) and Polypropylene (PP) fibers on the fresh and residual mechanical properties of the hybrid fiber reinforced SCC before and after the exposure of 250℃, 500℃ and 750℃ temperatures. The compressive and splitting tensile strength, modulus of rupture (MOR), ultrasonic pulse velocity (UPV) as well as toughness and weight loss were investigated at different temperatures. PVA and PP fibers were added into SCC mixtures having only macro steel fiber and also having binary hybridization of both macro and micro steel fiber. The results showed that the use of micro steel fiber replaced by macro steel fiber improved the fresh and hardened properties compared to the use of only macro steel fiber. Moreover, it was emphasized that PVA or PP enhanced the residual flexural performance of SCC, generally, while it negatively influenced the workability, weight loss, UPV and the residual strengths with regards to the use of single steel fiber and binary steel fiber hybridization. Compared to the effect of synthetic fibers, PP had slightly more positive effect in the view of workability while PVA enhanced the residual mechanical properties more.

Mechanical Properties of Natural Fiber Composites by Co-polymerized Thermoplastics (공중합된 열가소성 수지에 의한 자연섬유 복합재의 기계적 물성에 관한 연구)

  • Lee, Jung-Hoon;Hwang, Byung-Sun;Byun, Joon-Hyung;Kim, Byung-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.116-120
    • /
    • 2005
  • In this study, composites with polypropylene(PP) and Jute fiber were prepared by compression molding technique. Generally, hydrophilic jute fibers do not adhere well to PP, which is hydrophobic. Maleic anhydride grafted polypropylene(MAPP) had been widely used as a coupling agent to improve the bonding between ligno-cellulosic fibers and PP. The coupling agent improved the tensile and flexural properties when the mechanical properties were tested by using a UTM. The mechanical properties of natural fiber composites(NFCs) by modified thermoplastics were higher than those of NFCs by unmodified thermoplastics. Fracture surfaces of the composites and the fiber orientations were investigated by scanning electron microscopy. The mechanical performance of NFCs by modified thermoplastics appeared to be improved by the enhanced interface adhesion between the fiber and the matrix.

  • PDF

A Study on the Ternary GF/PA/PP Composites Manufactured by Using Pre-impregnated Glass Fiber (유리섬유를 미리 함침시켜 제조한 GF/PA/PP 삼성분 복합재료에 관한 연구)

  • 윤병선;우동진;서문호;이석현
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.701-712
    • /
    • 2000
  • The continuous fiber reinforced composites of GF/PA were fabricated using a pultrusion resin impregnation apparatus and cut into pellets of 6 mm length. GF/PA pellets were then melt-mixed with PP resin to prepare new types of ternary composites, GF/PA/PP. Mechanical and rheological properties of such composites revealed to be better than conventional ternary composites due to the longer average glass fibers. Measurements also showed that the mechanical properties of the composites prepared by direct injection molding were higher than those of the composites prepared by injection molding followed by extrusion. To improve adhesions of fiber surfaces and polymer matrix, PP-MAH (maleic anhydride) has been introduced in the GF/PA/PP composites as a compatibilizer. It was found that PP-MAH did indeed improve surface adhesion between fibers and polymer matrix and that, as a result, various mechanical properties were markedly enhanced. Visualization of the phase structure in the samples was done by means of SEM. The surfaces of glass fibers in GF/PA/PP composites revealed that the fibers remained to be encapsulated by PA resin. However, pre-encapsulation did not persist in GF/PA/PP/PP-MAH composites due to the improvement of surface adhesion between fibers and polymer matrix, although resin sticking to the fiber was observed.

  • PDF

STRUCTURAL TEST AND ANALYSIS OF RC SLAB AFTER FIRE LOADING

  • Chung, Chul-Hun;Im, Cho Rong;Park, Jaegyun
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.223-236
    • /
    • 2013
  • In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber.

Investigation of Mechanical Property of Polypropylene and CF/PP Composites with Number of Recycle (재활용 횟수에 따른 폴리프로필렌 및 탄소섬유 강화 PP 복합재료의 물성 변화 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Lea, Tea-Ung;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.303-308
    • /
    • 2013
  • Carbon fiber (CF) reinforced polypropylene (PP) compositeis was increased to amount consumed. In this study, recycle of composites by recycle times. CF was containing 20%. Mechanical and interfacial propertis of CF/PP was evaluation for number of recycle time. Mechanical assessment of CF/PP was tension, bending, fatigue tension test and izod test method. Interfacial assessment of CF/PP was wettability test and FE-SEM of fracture surface method. Fiber and matrix was changed to recycle time. The more recycle of CF/PP, the more interfacial bonding was decreased. Because fiber and matrix was damaged to thermal damage. And then reinforced CF was shorter than original shape.

Effects of Alkali Treated Nano-kenaf Fiber in Polypropylene Composite upon Mechanical Property Changes (알카리로 처리된 나노케냐프 섬유가 PP 복합소재 내에서 기계적 물성 변화에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • The surface of nano-kenaf containing cellulose fibers was treated with alkali (NaOH) and their effects on the physical properties of the polypropylene (PP) composite were investigated. The treatment of alkali on the fibers increased the melt flow index (M.I.), elongation%, and impact strength, while it decreased the tensile strength, flexural modulus and heat deflection temperature (HDT) of the compound compared to the untreated one. It seemed the alkali treatment on the nano-kenaf fiber changed the character of the fiber due to removal of impurities and chemicals on the surface and resulted in decreased interfacial adhesion between the nano-fiber surface and the PP matrix and changed the character of the PP.

Fire Resistance of High Strength Concrete Pepending on Curing Method and Polypropylene fiber (양생방법 및 PP 섬유 혼입률 변화에 따른 고강도 콘크리트의 내화특성)

  • Son, Ho-Jung;Pei, Chang-Chun;Kim, Won-Ki;Han, Min-Cheol;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.481-482
    • /
    • 2009
  • This study analyzed fire resistance characteristics of high strength concrete according to changes in curing method and PP fiber content, and the results are as follows. First in case of standard curing, spalling was prevented at PP fiber content of 0.05 % or higher. Autoclave and steam curing showed prevention of spalling at content of 0.1 % or higher. For residual compressive strength, measurement of strength for plain was impossible due to spalling phenomenon. A satisfactory trend was shown with increase in PP fiber content with the strength of about 30 MPa.

  • PDF

A Study on the Spalling Properties of High-Performance Concrete with the Kinds of Aggregate and Polypropylene Fiber Contents (골재종류 및 폴리프로필렌 섬유 혼입률 변화에 따른 고성능 콘크리트의 폭열 특성에 관한 연구)

  • 한천구;양성환;이병렬;황인성
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.69-77
    • /
    • 1999
  • A spalling is defined as the damages of concrete exposed to high temperature during the fire by causing cracks and localized bursting of small pieces of concrete. It is reported that spalling is caused by the vapor pressure and polypropylene(PP) fiber has an important role in protecting from spalling. This paper is a study on the properties and spalling resistance of high-performance concrete with the kinds of aggregate and the contents of PP fiber. According to the experimental results, concrete contained no PP fiber take place in the form of the surface spalling and the failure of specimenns after fire test regardless of the kinds of aggregate. Concrete contained more than 0.05% of PP fiber with the aggregate of basalt does not take place the spalling, while the concrete using granite and limestone does the surface spalling. It is found that residual compressive strength after exposed at high temperature has 50~60% of its original strength. Although specimens after exposed at high temperature is cured at water for 28days, they do not recover their original strength.