• Title/Summary/Keyword: power-law exponent

Search Result 142, Processing Time 0.02 seconds

On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.33-45
    • /
    • 2020
  • Geometrically nonlinear buckling of functionally graded magneto-electro-elastic (FG-MEE) nanoshells with the use of classical shell theory and nonlocal strain gradient theory (NSGT) has been analyzed in present research. Mathematical formulation based on NSGT gives two scale coefficients for simultaneous description of structural stiffness reduction and increment. Functional gradation of material properties is described based on power-law formulation. The nanoshell is under a multi-physical field related to applied voltage, magnetic potential, and mechanical load. Exerting a strong electric voltage, magnetic potential or mechanical load may lead to buckling of nanoshell. Taking into account geometric nonlinearity effects after buckling, the behavior of nanoshell in post-buckling regime can be analyzed. Nonlinear governing equations are reduced to ordinary equations utilizing Galerkin's approach and post-buckling curves are obtained based on an analytical procedure. It will be shown that post-buckling curves are dependent on nonlocal/strain gradient parameters, electric voltage magnitude and sign, magnetic potential magnitude and sign and material gradation exponent.

Katayama Equation Modified on the Basis of Critical-Scaling Theory (임계 축척 이론을 이용한 카타야마 식의 수정)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.185-191
    • /
    • 2006
  • It is desirable to have an accurate expression on the temperature dependence of surface(or interfacial) tension ${\sigma}$, because most of the interfacial thermodynamic functions can be derived from it. There have been proposed several equations on the temperature dependence of the surface tension, ${\sigma}(T)$. Among them $E{\ddot{o}}tv{\ddot{o}}s$ equation and the one modified by Katayama, which is called Katayama equation, for improving accuracies of $E{\ddot{o}}tv{\ddot{o}}s$ equation close to critical points, have been most well-known. In this article Katayama equation is interpreted on the basis of the cell model to understand the nature of the equation. The cell model results in an expression very similar to Katayama equation. This implies that, although $E{\ddot{o}}tv{\ddot{o}}s$ and Katayama equations were obtained on the basis of experimental results, they have a sound theoretical background. The Katayama equation is also modified with the phase volume replaced with a critical scaling expression. The modified Katayama equation becomes a power-law equation with the exponent slightly different from the value obtained by critical-scaling theory. This implies that Katayama equation can be replaced by a critical-scaling equation which is proven to be accurate.

A Study on the AC Interfacial Breakdown Properties of the Interface between Epoxy/EPDM with Variation of the Spread Oil (도포된 오일의 변화에 따른 Epoxy/EPDM 계면의 교류 절연파괴 특성에 관한 연구)

  • Bae, Deok-Gwon;Jeong, Il-Hyeong;O, Jae-Han;Park, U-Hyeon;Lee, Gi-Sik;Kim, Chung-Hyeok;Lee, Jun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.445-450
    • /
    • 2000
  • Many successful developments and microscopic studies have been made on the high quality insulating materials. However, a little attention have given to the macroscopic interface in HV(High Voltage) insulating systems. In this study, AC interfacial breakdown strength and V-t characteristic of the interface between Epoxy/EPDM(ethylene propylene diene terpolymer) are investigated. Electrode system is designed to reduce the charges from electrodes and to have the tangential potentials along the interface between Epoxy/EPDM by FEM(finite elements method). The AC breakdown strength is observed when HV is given to the interface. It is shown that AC interfacial breakdown strength is improved by increasing interfacial pressure and oiling. In particular, it was saturated at certain interfacial pressure level. V-t characteristic is able to extend to the life time of the interface between Epoxy/EPDM. Oiling also plays a good roll in prolongation of the life time.

  • PDF

Influence of spacing between buildings on wind characteristics above rural and suburban areas

  • Kozmar, Hrvoje
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.413-426
    • /
    • 2008
  • A wind tunnel study has been carried out to determine the influence of spacing between buildings on wind characteristics above rural and suburban type of terrain. Experiments were performed for two types of buildings, three-floor family houses and five-floor apartment buildings. The atmospheric boundary layer (ABL) models were generated by means of the Counihan method using a castellated barrier wall, vortex generators and a fetch of roughness elements. A hot wire anemometry system was applied for measurement of mean velocity and velocity fluctuations. The mean velocity profiles are in good agreement with the power law for exponent values from ${\alpha}=0.15$ to ${\alpha}=0.24$, which is acceptable for the representation of the rural and suburban ABL, respectively. Effects of the spacing density among buildings on wind characteristics range from the ground up to $0.6{\delta}$. As the spacing becomes smaller, the mean flow is slowed down, whilst, simultaneously, the turbulence intensity and absolute values of the Reynolds stress increase due to the increased friction between the surface and the air flow. This results in a higher ventilation efficiency as the increased retardation of horizontal flow simultaneously accompanies an intensified vertical transfer of momentum.

Daytime Visibility of Halley's Comet in 1222

  • Choi, Go-Eun;Lee, Ki-Won;Mihn, Byeong-Hee;Ahn, Young Sook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.70.1-70.1
    • /
    • 2017
  • We reexamine the Goryeosa (History of the Goryeo Dynasty, A.D. 918-1392) account that Halley's Comet was seen during the daytime on September 9, 1222. To verify whether the referenced "daytime" refers to twilight or daylight (i.e., when the Sun is above horizon), we determine the absolute magnitude and heliocentric power-law exponent for Halley's Comet using observations made around the perihelion in 1986 and a formula considering the brightness enhancement by forward-scattering. We then apply the results to estimate the light curve of Halley's Comet in the 1222 event and find that the total visible magnitude could reach a maximum of -1.7 on September 8, one day before the Goryeosa's account. Therefore, we think that Halley's Comet with a coma of -1.7 mag and tail-length of about $20^{\circ}$ was actually observed during the day on September 9 because the observational conditions on that day were so good that Venus was visible in daylight. Furthermore, we think that the event might have been witnessed in the morning sky because the contents of Venus's culmination (occurred around September 9.07 TT) continue on the same day account.

  • PDF

THE ARCHES CLUSTER MASS FUNCTION

  • Kim, Sung-Soo S.;Figer, Donald F.;Kudritzki, Rolf P.;Naharro, F.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.153-155
    • /
    • 2007
  • We have analyzed H and $K_s$-band images of the Arches cluster obtained using the NIRC2 instrument on Keck with the laser guide star adaptive optics (LGS AO) system. With the help of the LGS AO system, we were able to obtain the deepest ever photometry for this cluster and its neighborhood, and derive the background-subtracted present-day mass function (PDMF) down to $1.3M_{\bigodot}$ for the 5"-9" annulus of the cluster. We find that the previously reported turnover at $6M_{\bigodot}$ is simply due to a local bump in the mass function (MF), and that the MF continues to increase down to our 50 % completeness limit ($1.3M_{\bigodot}$) with a power-law exponent of ${\Gamma}$ = -0.91 for the mass range of 1.3 < M/$M_{\bigodot}$ < 50. Our numerical calculations for the evolution of the Arches cluster show that the ${\Gamma}$ values for our annulus increase by 0.1-0.2 during the lifetime of the cluster, and thus suggest that the Arches cluster initially had ${\Gamma}$ of $-1.0{\sim}-1.1$, which is only slightly shallower than the Salpeter value.

Dust Properties in Afterglow of GRB071025 at z~5: Evidence for Supernovae-produced Dust in the Early Universe

  • Jang, Min-Sung;Im, Myung-Shin;Lee, In-Duk;Urata, Y.;Huang, L.;Fan, Xiaohui;Jiang, Lihua
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.35.2-35.2
    • /
    • 2010
  • It is crucial to understand the dust properties in the early universe since they provide important clues about how the early cosmic star formation should be interpreted in the presence of dust extinction. GRB 071025 is an unusually red GRB that occured at high redshift, offering an unique opportunity to study the dust properties in the early universe. We investigate the extinction properties of GRB 071025 through the analysis of RIJHK data obtained with the 1-m telescope at Mt. Lemmon Optical Astronomy Observatory (LOAO) and Simultaneous Quad Infrared Imaging Device (SQIID) on the Kitt-Peak Mayall 4-m telescope. Our dataset is independent from that in a previous work (Perley et al. 2010) where a small systematic photometric errors could complicate the interpretation. After determining the temporal power law exponent with five I-band frames from LOAO, we construct a multi-band monochromatic SED of the GRB afterglow. By using various extinction laws, we find that the SED is best fitted with models that incorporate SNe II dust and derive a photometric redshift of 4.99(+0.12/-0.03). Our results strongly support the prior claim that dusts in GRB 071025 originate mainly from supernovae, implying SNe II predominantly contributed to the dust enrichment in the early universe (z ~ 5).

  • PDF

A Study on Fatigue Crack Propagation of Random Short Fiber SMC Composite (非規則性 短纖維强化 SMC複合材料의 疲勞龜裂 進展에 관한 硏究)

  • 김광수;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.87-95
    • /
    • 1989
  • The fatigue crack propagation of random short fiber SMC composite material was investigated. In macroscopic viewpoint, SMC composite material was treated as isotropic material and was analyzed in terms of conventional fracture mechanics. Experiments were conducted on mode I and mixed respectively and various loading level was applied to each mode. Fatigue crack growth can be explained in three steps and most of fatigue life is consumed in initial crack growth. In this experiments, power law, i.e, da/dN=C(C.DELTA.K)$^{m}$ , between fatigue crack growth rate and stress intensity factor range, was valid and the value of the exponent m is about 10, which is much higher than that of other metals. Fracture mechanism was also investigated by SEM fractographic study.

Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM

  • Madenci, Emrah;Gulcu, Saban
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.633-642
    • /
    • 2020
  • Artificial neural networks (ANNs) are known as intelligent methods for modeling the behavior of physical phenomena because of it is a soft computing technique and takes data samples rather than entire data sets to arrive at solutions, which saves both time and money. ANN is successfully used in the civil engineering applications which are suitable examining the complicated relations between variables. Functionally graded materials (FGMs) are advanced composites that successfully used in various engineering design. The FGMs are nonhomogeneous materials and made of two different type of materials. In the present study, the bending analysis of functionally graded material (FGM) beams presents on theoretical based on combination of mixed-finite element method, Gâteaux differential and Timoshenko beam theory. The main idea in this study is to build a model using ANN with four parameters that are: Young's modulus ratio (Et/Eb), a shear correction factor (ks), power-law exponent (n) and length to thickness ratio (L/h). The output data is the maximum displacement (w). In the experiments: 252 different data are used. The proposed ANN model is evaluated by the correlation of the coefficient (R), MAE and MSE statistical methods. The ANN model is very good and the maximum displacement can be predicted in ANN without attempting any experiments.

Wind tunnel modeling of flow over mountainous valley terrain

  • Li, C.G.;Chen, Z.Q.;Zhang, Z.T.;Cheung, J.C.K.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.275-292
    • /
    • 2010
  • Wind tunnel experiments were conducted to investigate the wind characteristics in the mountainous valley terrain with 4 simplified valley models and a 1:500 scale model of an existing valley terrain in the simulated atmospheric neutral boundary layer model. Measurements were focused on the mean wind flow and longitudinal turbulence intensity. The relationship between hillside slopes and the velocity speed-up effect were studied. By comparing the preliminary results obtained from the simplified valley model tests and the existing terrain model test, some fundamental information was obtained. The measured results indicate that it is inappropriate to describe the mean wind velocity profiles by a power law using the same roughness exponent along the span wise direction in the mountainous valley terrain. The speed-up effect and the significant change in wind direction of the mean flow were observed, which provide the information necessary for determining the design wind speed such as for a long-span bridge across the valley. The longitudinal turbulence intensity near the ground level is reduced due to the speed-up effect of the valley terrain. However, the local topographic features of a more complicated valley terrain may cause significant perturbation to the general wind field characteristics in the valley.