• Title/Summary/Keyword: power-efficient design

Search Result 1,044, Processing Time 0.024 seconds

Seismic behavior of liquid storage tanks with 2D and 3D base isolation systems

  • Kilic, Samet;Akbas, Bulent;Shen, Jay;Paolacci, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.627-644
    • /
    • 2022
  • In past major earthquakes (1994 Northridge, 1995 Kobe, Chi-Chi 1999, Kocaeli 1999), significant damages occurred in the liquid storage tanks. The basic failure patterns were observed to be the buckling of the tank wall and uplift of the anchorage system. The damages in the industrial facilities and nuclear power plants have caused the spread of toxic substances to the environment and significant fires. Seismic isolation can be used in liquid storage tanks to decouple the structure and decrease the structural demand in the superstructure in case of ground shaking. Previous studies on the use of seismic isolation systems on liquid storage tanks show that an isolation system reduces the impulsive response but might slightly increase the convective one. There is still a lack of understanding of the seismic response of seismically isolated liquid storage tanks considering the fluid-structure interaction. In this study, one broad tank, one medium tank, and one slender tank are selected and designed. Two- and three-dimensional elastomeric bearings are used as seismic isolation systems. The seismic performance of the tanks is then investigated through nonlinear dynamic time-history analyses. The effectiveness of each seismic isolation system on tanks' performance was investigated. Isolator tension forces, modal analysis results, hydrodynamic stresses, strains, sloshing heights and base shear forces of the tanks are compared. The results show that the total base shear is lower in 3D-isolators compared to 2D-isolators. Even though the tank wall stresses, and strains are slightly higher in 3D-isolators, they are more efficient to prevent the tension problem.

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Comparative Analysis on the Performance of NHPP Software Reliability Model with Exponential Distribution Characteristics (지수분포 특성을 갖는 NHPP 소프트웨어 신뢰성 모형의 성능 비교 분석)

  • Park, Seung-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.641-648
    • /
    • 2022
  • In this study, the performance of the NHPP software reliability model with exponential distribution (Exponential Basic, Inverse Exponential, Lindley, Rayleigh) characteristics was comparatively analyzed, and based on this, the optimal reliability model was also presented. To analyze the software failure phenomenon, the failure time data collected during system operation was used, and the parameter estimation was solved by applying the maximum likelihood estimation method (MLE). Through various comparative analysis (mean square error analysis, true value predictive power analysis of average value function, strength function evaluation, and reliability evaluation applied with mission time), it was found that the Lindley model was an efficient model with the best performance. Through this study, the reliability performance of the distribution with the characteristic of the exponential form, which has no existing research case, was newly identified, and through this, basic design data that software developers could use in the initial stage can be presented.

Machinability investigation of gray cast iron in turning with ceramics and CBN tools: Modeling and optimization using desirability function approach

  • Boutheyna Gasmi;Boutheyna Gasmi;Septi Boucherit;Salim Chihaoui;Tarek Mabrouki
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.119-137
    • /
    • 2023
  • The purpose of this research is to assess the performance of CBN and ceramic tools during the dry turning of gray cast iron EN GJL-350. During the turning operation, the variable machining parameters are cutting speed, feed rate, depth of cut and type of the cutting material. This contribution consists of two sections, the first one deals with the performance evaluation of four materials in terms of evolution of flank wear, surface roughness (2D and 3D) and cutting forces. The focus of the second section is on statistical analysis, followed by modeling and optimization. The experiments are conducted according to the Taguchi design L32 and based on ANOVA approach to quantify the impact of input factors on the output parameters, namely, the surface roughness (Ra), the cutting force (Fz), the cutting power (Pc), specific cutting energy (Ecs). The RSM method was used to create prediction models of several technical factors (Ra, Fz, Pc, Ecs and MRR). Subsequently, the desirability function approach was used to achieve a multi-objective optimization that encompasses the output parameters simultaneously. The aim is to obtain optimal cutting regimes, following several cases of optimization often encountered in industry. The results found show that the CBN tool is the most efficient cutting material compared to the three ceramics. The optimal combination for the first case where the importance is the same for the different outputs is Vc=660 m/min, f=0.116 mm/rev, ap=0.232 mm and the material CBN. The optimization results have been verified by carrying out confirmation tests.

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.

SiRENE: A new generation of engineering simulator for real-time simulators at EDF

  • David Pialla;Stephanie Sala;Yann Morvan;Lucie Dreano;Denis Berne;Eleonore Bavoil
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.880-885
    • /
    • 2024
  • For Safety Assisted Engineering works, real-time simulators have emerged as a mandatory tool among all the key actors involved in the nuclear industry (utilities, designers and safety authorities). EDF, Electricité de France, as the leading worldwide nuclear power plant operator, has a crucial need for efficient and updated simulation tools for training, operating and safety analysis support. This paper will present the work performed at EDF/DT to develop a new generation of engineering simulator to fulfil these tasks. The project is called SiRENE, which is the acronym of Re-hosted Engineering Simulator in French. The project has been economically challenging. Therefore, to benefit from existing tools and experience, the SiRENE project combines: - A part of the process issued from the operating fleet training full-scope simulator. - An improvement of the simulator prediction reliability with the integration of High-Fidelity models, used in Safety Analysis. These High-Fidelity models address Nuclear Steam Supply System code, with CATHARE thermal-hydraulics system code and neutronics, with COCCINELLE code. - And taking advantage of the last generation and improvements of instructor station. The intensive and challenging uses of the new SiRENE engineering simulator are also discussed. The SiRENE simulator has to address different topics such as verification and validation of operating procedures, identification of safety paths, tests of I&C developments or modifications, tests on hydraulics system components (pump, valve etc.), support studies for Probabilistic Safety Analysis (PSA). etc. It also emerges that SiRENE simulator is a valuable tool for self-training of the newcomers in EDF nuclear engineering centers. As a modifiable tool and thanks to a skillful team managing the SiRENE project, specific and adapted modifications can be taken into account very quickly, in order to provide the best answers for our users' specific issues. Finally, the SiRENE simulator, and the associated configurations, has been distributed among the different engineering centers at EDF (DT in Lyon, DIPDE in Marseille and CNEPE in Tours). This distribution highlights a strong synergy and complementarity of the different engineering institutes at EDF, working together for a safer and a more profitable operating fleet.

Design of electric skateboard with gearbox (기어박스가 장착된 전동 스케이트보드 설계)

  • Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.687-692
    • /
    • 2024
  • Recently, electric skateboards have been used as a means of personal transportation due to their convenience and simplicity of operation, but the conventional skateboards driven by timing belts or hub motors have disadvantages such as low driving torque, high current and vibration. Therefore, in this paper, we propose a new type of electric skateboard that can run at high speeds for long periods of time so that it can be used as a auxiliary means of transportation. The planetary gear and motor unit are combined and installed inside one drive wheel, and power is supplied to the wheel through the integrated driving unit to prevent high currents and enable high-speed driving. First, the allowable current and running speed of the electric skateboard were set for efficient personal transportation and the appropriate reduction ratio, modules, and planetary gear dimensions were determined by comparing the torque required for the wheel axis and the maximum output torque of the motor. Additionally, an appropriate suspension device was added to reduce driving vibration for user convenience, and the feasibility of the proposed in-wheel gearbox was experimentally verified through fabrication.

Analysis on the Cooling Efficiency of High-Performance Multicore Processors according to Cooling Methods (기계식 쿨링 기법에 따른 고성능 멀티코어 프로세서의 냉각 효율성 분석)

  • Kang, Seung-Gu;Choi, Hong-Jun;Ahn, Jin-Woo;Park, Jae-Hyung;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.1-11
    • /
    • 2011
  • Many researchers have studied on the methods to improve the processor performance. However, high integrated semiconductor technology for improving the processor performance causes many problems such as battery life, high power density, hotspot, etc. Especially, as hotspot has critical impact on the reliability of chip, thermal problems should be considered together with performance and power consumption when designing high-performance processors. To alleviate the thermal problems of processors, there have been various researches. In the past, mechanical cooling methods have been used to control the temperature of processors. However, up-to-date microprocessors causes severe thermal problems, resulting in increased cooling cost. Therefore, recent studies have focused on architecture-level thermal-aware design techniques than mechanical cooling methods. Even though architecture-level thermal-aware design techniques are efficient for reducing the temperature of processors, they cause performance degradation inevitably. Therefore, if the mechanical cooling methods can manage the thermal problems of processors efficiently, the performance can be improved by reducing the performance degradation due to architecture-level thermal-aware design techniques such as dynamic thermal management. In this paper, we analyze the cooling efficiency of high-performance multicore processors according to mechanical cooling methods. According to our experiments using air cooler and liquid cooler, the liquid cooler consumes more power than the air cooler whereas it reduces the temperature more efficiently. Especially, the cost for reducing $1^{\circ}C$ is varied by the environments. Therefore, if the mechanical cooling methods can be used appropriately, the temperature of high-performance processors can be managed more efficiently.

Design of an Efficient Electrocardiogram Measurement System based on Bluetooth Network using Sensor Network (Bluetooth기반의 센서네트워크를 이용한 효율적인 심전도 측정시스템 설계)

  • Kim, Sun-Jae;Oh, Won-Wook;Lee, Chang-Soo;Min, Byoung-Muk;Oh, Hae-Seok
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.699-706
    • /
    • 2009
  • The convergence tendency accelerates the realization of the ubiquitous healthcare (u-Healthcare) between the technology including the power generaation and IT-BT-NT of the ubiquitous computing technology. By rapidly analyzing a large amount of collected from the sensor network with processing and delivering to the medical team an u-Healthcare can provide a patient for an inappropriate regardless of the time and place. As to the existing u-Healthcare, since the sensor node all transmitted collected data by using with the Zigbee protocol the processing burden of the base node was big and there was many communication frequency of the sensor node. In this paper, the u-Healthcare system in which it can efficiently apply to mobile apparatuses it provided the transfer rate in which it is superior to the bio-signal delivery where there are the life and direct relation which by using the Bluetooth instead of the Zigbee protocol and in which it is variously used in the ubiquitous environment was designed. Moreover, by applying the EEF(Embedded Event Filtering) technique in which data in which it includes in the event defined in advance selected and it transmits with the base node, the communication frequency and were reduced. We confirmed to be the system in which it is efficient through the simulation result than the existing Electrocardiogram Measurement system.

A Fast Inversion for Low-Complexity System over GF(2 $^{m}$) (경량화 시스템에 적합한 유한체 $GF(2^m)$에서의 고속 역원기)

  • Kim, So-Sun;Chang, Nam-Su;Kim, Chang-Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.51-60
    • /
    • 2005
  • The design of efficient cryptosystems is mainly appointed by the efficiency of the underlying finite field arithmetic. Especially, among the basic arithmetic over finite field, the rnultiplicative inversion is the most time consuming operation. In this paper, a fast inversion algerian in finite field $GF(2^m)$ with the standard basis representation is proposed. It is based on the Extended binary gcd algorithm (EBGA). The proposed algorithm executes about $18.8\%\;or\;45.9\%$ less iterations than EBGA or Montgomery inverse algorithm (MIA), respectively. In practical applications where the dimension of the field is large or may vary, systolic array sDucture becomes area-complexity and time-complexity costly or even impractical in previous algorithms. It is not suitable for low-weight and low-power systems, i.e., smartcard, the mobile phone. In this paper, we propose a new hardware architecture to apply an area-efficient and a synchronized inverter on low-complexity systems. It requires the number of addition and reduction operation less than previous architectures for computing the inverses in $GF(2^m)$ furthermore, the proposed inversion is applied over either prime or binary extension fields, more specially $GF(2^m)$ and GF(P) .