• Title/Summary/Keyword: power-based routing

Search Result 240, Processing Time 0.034 seconds

Energy Efficient Cluster Head Selection and Routing Algorithm using Hybrid Firefly Glow-Worm Swarm Optimization in WSN

  • Bharathiraja S;Selvamuthukumaran S;Balaji V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2140-2156
    • /
    • 2023
  • The Wireless Sensor Network (WSN), is constructed out of teeny-tiny sensor nodes that are very low-cost, have a low impact on the environment in terms of the amount of power they consume, and are able to successfully transmit data to the base station. The primary challenges that are presented by WSN are those that are posed by the distance between nodes, the amount of energy that is consumed, and the delay in time. The sensor node's source of power supply is a battery, and this particular battery is not capable of being recharged. In this scenario, the amount of energy that is consumed rises in direct proportion to the distance that separates the nodes. Here, we present a Hybrid Firefly Glow-Worm Swarm Optimization (HF-GSO) guided routing strategy for preserving WSNs' low power footprint. An efficient fitness function based on firefly optimization is used to select the Cluster Head (CH) in this procedure. It aids in minimising power consumption and the occurrence of dead sensor nodes. After a cluster head (CH) has been chosen, the Glow-Worm Swarm Optimization (GSO) algorithm is used to figure out the best path for sending data to the sink node. Power consumption, throughput, packet delivery ratio, and network lifetime are just some of the metrics measured and compared between the proposed method and methods that are conceptually similar to those already in use. Simulation results showed that the proposed method significantly reduced energy consumption compared to the state-of-the-art methods, while simultaneously increasing the number of functioning sensor nodes by 2.4%. Proposed method produces superior outcomes compared to alternative optimization-based methods.

Routing Protocol based on Connectivity Degree and Energy Weight (연결도와 에너지 가중치 기반의 라우팅 프로토콜)

  • Jeong, Yoon-Su
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.1
    • /
    • pp.7-15
    • /
    • 2014
  • In this paper, we propose an efficient routing protocol to achieve an optimal route searching process of the network lifetime by balancing power consumption per node. The proposed protocols aim at finding energy-efficient paths at low protocol power. In our protocol, each intermediate node keeps power level and branch number of child nodes and it transmits the data the nearest neighbor node. Our protocol may minimize the energy consumption at each node, thus prolong the lifetime of the system regardless of the location of the sink outside or inside the cluster. In the proposed protocol for inter-cluster communication, a cluster head chooses a relay node from its adjacent cluster heads according to the node's residual energy and its distance to the base station. Simulation results show that proposed protocol successfully balances the energy consumption over the network, and achieves a remarkable network lifetime improvement as highly as 7.5%.

  • PDF

Optimal Routing Path Selection Algorithm in Ad-hoc Wireless Sensor Network (Ad-hoc 센서 네트워크를 위한 최적 라우팅 경로 설정 알고리즘)

  • Jang In-Hun;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.736-741
    • /
    • 2005
  • The highly popular algorithm to determine routing path for the multi-hopping wireless sensor network is DSR(Dynamic Source Routing), which is one of the Demand-Driven way to makes the route only when there is a request for sending data. However, because DSR attaches the route's record on the sending packet, the bigger number of sensor node is, the heavier packet in DSR becomes. In this paper, we try to propose the new optimal routing path selecting algorithm which does not make the size of packet bigger by using proper routing table even though the number of sensor node increases, and we try to show our algorithm is more stable and reliable because it is based on the cost function considering some network resources of each sensor node such as power consumption, mobility, traffic in network, distance(hop) between source and destination.

A Study on an AODV Routing Protocol with Energy-Efficiency (에너지 효율을 고려한 AODV 라우팅 프로토콜에 관한 연구)

  • Hwang, Tae Hyun;Kim, Doo Yong;Kim, Kiwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.17-22
    • /
    • 2015
  • In recent years, wireless sensor networks have become an important part of data communications. Sensors provide information about the required measurements or control states over wireless networks. The energy efficient routing protocol of wireless sensor networks is the key issue for network lifetimes. The routing protocol must ensure that connectivity in a network is remained for a long period of time and the energy status of the sensor in the entire network must be in the same level in order not to leave the network with a wide difference in the energy consumptions of the sensors. In this paper we propose a new routing protocol based on AODV protocol that considers the energy efficiency when the protocol determines the routing paths, which is called AODV-EE. The proposed method prevents an imbalance of power consumption in sensors of wireless networks. From the simulation results it is shown that the proposed algorithm can be effectively used in collecting and monitoring data without concerning about the disconnection of the networks.

An Entropy-based Cooperative-Aided Routing Protocol for Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크를 위한 엔트로피기반 협력도움 라우팅 프로토콜)

  • An, Beong-Ku;Lee, Joo-Sang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.106-113
    • /
    • 2008
  • In this paper, we propose an Entropy-based Cooperative-Aided Routing Protocol (ECARP) in Mobile Ad-hoc fireless Sensor Networks (MAWSN). The main contributions and features of this paper are as follows. First, the entropy-based cooperative routing protocol which is based on node mobility is proposed for supporting stable routing route construction. Second, cooperative data transmission method is used for improving data transmission ratio with the improved SNR. Third, we consider a realistic approach, in the points of view of the MAWSN, based on mobile sensor nodes as well as fixed sensor nodes in sensor fields while the conventional research for sensor networks focus on mainly fixed sensor nodes. The performance evaluation of the proposed routing protocol is performed via simulation and analysis.

A Threshold based Connectivity Enhancement Scheme for Mobile Ad-hoc Networks (MANET에서 경로 연속성 증대방안에 대한 연구)

  • Jang Yunchul;Park Sangioon;Kim Byunggi
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.2
    • /
    • pp.215-219
    • /
    • 2005
  • Generally, the mobile nodes in MANET have the limited power capacity available for actual communications. Thus, the power management is very important for packet routing or forwarding. Although MTPR, MBCR and MMBCR are proposed to treat the problem of power consumption, there have been few researches resolving the link breakdown that is occurred by the power exhaustion during transmission. In this sense, the reliable scheme should be required to ensure the routing connectivity. In this paper, we propose three schemes to enforce the routing connectivity. If the signal strength is dropped below a signal threshold, the candidate route is previously selected to prepare the link breakdown. Also, on multi-channel, we propose the lifetime increment scheme of a node that it manage its available power to the needed power of a new link. The simulation results show the enforcement of the link connectivity and the performance improvements of the delay time through the effective connection management.

A Campus Community-based Mobility Model for Routing in Opportunistic Networks

  • Pan, Daru;Fu, Min;Sun, Jiajia;Zou, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1034-1051
    • /
    • 2016
  • Mobility models are invaluable for determining the performance of routing protocols in opportunistic networks. The movement of nodes has a significant influence on the topological structure and data transmission in networks. In this paper, we propose a new mobility model called the campus-based community mobility model (CBCNM) that closely reflects the daily life pattern of students on a real campus. Consequent on a discovery that the pause time of nodes in their community follows a power law distribution, instead of a classical exponential distribution, we abstract the semi-Markov model from the movement of the campus nodes and analyze its rationality. Then, using the semi-Markov algorithm to switch the movement of the nodes between communities, we infer the steady-state probability of node distribution at random time points. We verified the proposed CBCNM via numerical simulations and compared all the parameters with real data in several aspects, including the nodes' contact and inter-contact times. The results obtained indicate that the CBCNM is highly adaptive to an actual campus scenario. Further, the model is shown to have better data transmission network performance than conventional models under various routing strategies.

A Cluster-based Power-Efficient Routing Protocol for Sensor Networks (센서 네트워크를 위한 클러스터 기반의 에너지 효율적인 라우팅 프로토콜)

  • Kweon, Ki-Suk;Lee, Seung-Hak;Yun, Hyun-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.1
    • /
    • pp.76-90
    • /
    • 2006
  • Sensor network consists of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it. The life time of each node in the sensor network significantly affects the life time of whole sensor network. A node which drained out its battery may incur the partition of whole network in some network topology The life time of each node depends on the battery capacity of each node. Therefore if all sensor nodes in the network live evenly long, the life time of the network will be longer. In this paper, we propose Cluster-Based Power-Efficient Routing (CBPER) Protocol which provides scalable and efficient data delivery to multiple mobile sinks. Previous r(luting protocols, such as Directed Diffusion and TTDD, need to flood many control packets to support multiple mobile sinks and many sources, causing nodes to consume their battery. In CBPER, we use the fact that sensor nodes are stationary and location-aware to construct and maintain the permanent grid structure, which makes nodes live longer by reducing the number of the flooding control packets. We have evaluated CBPER performance with TTDD. Our results show that CBPER is more power-efficient routing protocol than TTDD.

Reducing Transmit Power and Extending Network Lifetime via User Cooperation in the Next Generation Wireless Multihop Networks

  • Catovic, Amer;Tekinay, Sirin;Otsu, Toru
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.351-362
    • /
    • 2002
  • In this paper, we introduce a new approach to the minimum energy routing (MER) for next generation (NG) multihop wireless networks. We remove the widely used assumption of deterministic, distance-based channel model is removed, and analyze the potentials of MER within the context of the realistic channel model, accounting for shadowing and fading. Rather than adopting the conventional unrealistic assumption of perfect power control in a distributed multihop environment, we propose to exploit inherent spatial diversity of mobile terminals (MT) in NG multihop networks and to combat fading using transmit diversity. We propose the cooperation among MTs, whereby couples of MTs cooperate with each other in order to transmit the signal using two MTs as two transmit antennas. We provide the analytical framework for the performance analysis of this scheme in terms of the feasibility and achievable transmit power reduction. Our simulation result indicate that significant gains can be achieved in terms of the reduction of total transmit power and extension of network lifetime. These gains are in the range of 20-100% for the total transmit power, and 25-90% for the network lifetime, depending on the desired error probability. We show that our analytical results provide excellent match with our simulation results. The messaging load generated by our scheme is moderate, and can be further optimized. Our approach opens the way to a new family of channel-aware routing schemes for multihopNG wireless networks in fading channels. It is particularly suitable for delivering multicast/ geocast services in these networks.

Intelligent On-demand Routing Protocol for Ad Hoc Network

  • Ye, Yongfei;Sun, Xinghua;Liu, Minghe;Mi, Jing;Yan, Ting;Ding, Lihua
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1113-1128
    • /
    • 2020
  • Ad hoc networks play an important role in mobile communications, and the performance of nodes has a significant impact on the choice of communication links. To ensure efficient and secure data forwarding and delivery, an intelligent routing protocol (IAODV) based on learning method is constructed. Five attributes of node energy, rate, credit value, computing power and transmission distance are taken as the basis of segmentation. By learning the selected samples and calculating the information gain of each attribute, the decision tree of routing node is constructed, and the rules of routing node selection are determined. IAODV algorithm realizes the adaptive evaluation and classification of network nodes, so as to determine the optimal transmission path from the source node to the destination node. The simulation results verify the feasibility, effectiveness and security of IAODV.