• Title/Summary/Keyword: power transmission efficiency

Search Result 858, Processing Time 0.029 seconds

Characteristics of transmission efficiency in power driveline of agricultural tractors

  • I. H. Ryu;Kim, D. C.;Kim, K. U.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.132-138
    • /
    • 2000
  • Complex gear shifting and high speed-reduction ratio reduce the transmission efficiency in power driveline of agricultural tractors. According to a field test, the power transmission efficiency of a tractor in transporting operations was estimated about 70%. However, the actual efficiency was found by the experiment to fluctuate in a range of 56 to 87%. Therefore, the constant efficiency model commonly used for a simulation of power drivelines is not likely to simulate its performance more accurately. In order to predict power transmission efficiency more accurately, a new model was proposed and the new concepts of the maximum efficiency and sticking torque were introduced. The error mean between the measured and the predicted efficiencies was about 2.3% in mean. The new model reflecting the transmission characteristics in the power driveline of tractors could be used to analyze and predict the power transmission performance of tractors more accurately.

  • PDF

Wireless Energy Transmission High-Efficiency DC-AC Converter Using High-Gain High-Efficiency Two-Stage Class-E Power Amplifier

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.161-165
    • /
    • 2011
  • In this paper, a high-efficiency DC-AC converter is used for wireless energy transmission. The DC-AC convertter is implemented by combining the oscillator and power amplifier. Given that the conversion efficiency of a DC-AC converter is strongly affected by the efficiency of the power amplifier, a high-efficiency power amplifier is implemented using a class-E amplifier structure. Also, because of the low output power of the oscillator connected to the input stage of the power amplifier, a high-gain two-stage power amplifier using a drive amplifier is used to realize a high-output power DC-AC converter. The high-efficiency DC-AC converter is realized by connecting the oscillator to the input stage of the high-gain high-efficiency two-stage class-E power amplifier. The output power and the conversion efficiency of the DC-AC converter are 40.83 dBm and 87.32 %, respectively, at an operation frequency of 13.56 MHz.

Transfer Efficiency of Underwater Optical Wireless Power Transmission Depending on the Operating Wavelength

  • Kim, Sung-Man;Kwon, Dongyoon
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.571-575
    • /
    • 2020
  • Optical wireless power transmission (OWPT) is a good candidate for long-distance underwater wireless power transmission. In this work we investigate the transmission efficiency of underwater OWPT, depending on the operating wavelength. We consider four operating wavelengths: infrared, red, green, and blue. We also consider the cases of pure water and sea water for the working conditions. Our results show that it is necessary to select the operating wavelength of underwater OWPT according to the transmission distance and water type of the target application.

5.8 GHz Microwave Wireless Power Transmission System Development and Transmission-Efficiency Measurement (5.8 GHz 마이크로파 무선전력전송 시스템 개발 및 전송효율측정)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.59-63
    • /
    • 2014
  • Previous studies have selected wireless power transmission system using 2.45 GHz of ISM band, but the researches for 5.8 GHz microwave wireless power transmission have been relatively rare. The 5.8 GHz has some advantages compared with 2.45 GHz. Those are smaller antenna and smaller integrated system for RFIC. In this paper, the 5.8 GHz wireless power transmission system was developed and transmission efficiency was measured according to the distance. A transmitter sent the amplified microwaves through an antenna amplified by a power amplifier of 1W for 5.8 GHz, and a receiver was converted to DC from RF through a RF-DC Converter. In the 1W 5.8GHz wireless power transmission system, the converted currents and voltages were measured to evaluate transmission efficiency at each distance where LED lights up to 1m. The RF-DC Converter is designed and fabricated by impedance matching using full-wave rectifier circuit. The transmission-efficiency of the system shows from 1.05% at 0cm to 0.095% at 100cm by distance.

Characteristic of wireless power transmission S-Parameter for a superconductor coil

  • Jeong, In-Sung;Jung, Byung-Ik;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.36-39
    • /
    • 2015
  • Many studies are being conducted to implement wireless charging, for example, for cellular phones or electronic tooth brushes, via wireless power transmission technique. However, the magnetic induction method had a very short transmission distance. To solve this problem, the team of Professor Marin Soljacic proposed a magnetic resonance system that used two resonance coils with the same resonance frequency. It had an approximately 40% efficiency at a 2m distance. The system improved the low efficiency and short distance problems of the existing systems. So it could also widen the application range of wireless power transmission. Many studies on the subject are underway. In this paper, the superconductor coil was used to improve the efficiency of magnetic resonance wireless power transmission. The resonance wireless power transmission system had a source coil, a load coil, and resonance coils (a transmitter and a receiver). The efficiency and distance depended on the characteristics of the transmitter and receiver coils that had the same resonance frequency. Therefore, two resonance coils were fabricated by superconductors. The current density of the superconductor was higher than that of the normal conductor coil. Accordingly, it had a high quality-factor and improved efficiency.

Characteristics of Power Efficiency of Tractor Driveline (트랙터 전동라인의 전동효율 특성 분석)

  • 류일훈;김대철;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2002
  • According to the field test, the transient power transmission efficiency of a tractor driveline fluctuated in a range of 56 to 86% and the mean value was about 72.5%. Therefore, the constant efficiency model commonly used for a simulation of power performance was not proper far predicting such a variable of efficiency. In order to predict power efficiency more accurately, new concepts of the maximum efficiency and drag torque were introduced and a new model based on the these concepts was proposed. The difference between measured and model-predicted efficiencies was about 1.5% in average with a standard deviation of 1.1%. The new power efficiency model was expected to enhance the accuracy of predicting power transmission efficiencies of tractor drivelines.

Signal Transmission Scheme for Power Line Communications for Internet of Energy (에너지 인터넷을 위한 전력선 통신의 신호전송 기법)

  • Hwang, Yu Min;Sun, Young Ghyu;Kim, Soo Hwan;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.146-151
    • /
    • 2017
  • This paper proposes a transmission algorithm that optimizes transmission power and sub-channel allocation to maximize energy efficiency considering characteristics of the channel impedance of power lines in power line communication systems. Since the received power at the receiver is influenced by the characteristics of the power line channel, it is necessary to consider channel characteristics when developing a transmission strategy in a power line communication systems. In addition, the energy efficiency should be optimized while meeting the practical constraints, such as the maximum transmission power limit of the transmitter and minimum quality of service for each user. In the computer simulation, we confirm that the energy efficiency of the proposed algorithm is improved compared to baseline schemes.

Performance Evaluation of a Driving Power Transmission System for 50 kW Narrow Tractors

  • Hong, Soon-Jung;Ha, Jong-Kyou;Kim, Yong-Joo;Kabir, Md. Shaha Nur;Seo, Young Woo;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • Purpose: The development of compact tractors that can be used in dry fields, greenhouses, and orchards for pest control, weeding, transportation, and harvesting is necessary. The development and performance evaluation of power transmission units are very important when it comes to tractor development. This study evaluates the performance of a driving power transmission unit of a 50 kW multi-purpose narrow tractor. Methods: The performance of the transmission and forward-reverse clutch, which are the main components of the driving power transmission unit of multi-purpose narrow tractors, was evaluated herein. The transmission performance was evaluated in terms of power transmission efficiency, noise, and axle load, while the forward-reverse clutch performance was evaluated in terms of durability. The transmission's power transmission efficiency accounts for the measurement of transmission losses, which occur in the transmission's gear, bearing, and oil seal. The motor's power was input in the transmission's input shaft. The rotational speed and torque were measured in the final output shaft. The noise was measured at each speed level after installing a microphone on the left, right, and upper sides. The axle load test was performed through a continuous equilibrium load test, in which a constant load was continuously applied. The forward-reverse clutch performance was calculated using the engine torque to axle torque ratio with the assembled engine and transmission. Results: The loss of power in the transmission efficiency test of the driving power unit was 6.0-9.7 kW based on all gear steps. This loss of horsepower was equal to 11-18% of the input power (52 kW). The transmission efficiency of the driving power unit was 81.5-89.0%. The noise of the driving power unit was 50-57 dB at 800 rpm, 70-77 dB at 1600 rpm, and 76-83 dB at 2400 rpm. The axle load test verified that the input torque and axle revolutions were constant. The results of the forward-reverse clutch performance test revealed that hydraulic pressure and torque changes were stably maintained when moving forward or backward, and its operation met the hydraulic design standards. Conclusions: When comprehensively examined, these research results were similar to the main driving power transmission systems from USA and Japan in terms of performance. Based on these results, tractor prototypes are expected to be created and supplied to farmhouses after going through sufficient in-situ adaptability tests.

Efficiency Analysis of Magnetic Resonance Wireless Power Transmission using Superconductor Coil According to the Changing Position of Transmission and Receiving Coils (초전도 코일을 적용한 자기공명방식 무선전력전송의 송·수신 코일 배열에 따른 효율 분석)

  • Kang, Min-Sang;Choi, Hyo-Sang;Jeong, In-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.776-779
    • /
    • 2014
  • In this paper, we analyzed the efficiency of magnetic resonance wireless power transmission (WPT) using superconductor coil according to the changing position of transmission and receiving coils. We implemented a WPT system using a magnetic resonance at a frequency of 63.1 kHz. Transmission and receiving coils using superconductor coil were wound on a spiral manner of diameter 100mm. For comparison, transmission and receiving coils using normal conductor coil were designed under the same condition. At a distance of 50mm, we measured efficiency when transmission-receiving coils were matched 25%, 50%, 75% and 100%. When a superconductor coil was applied to the transmission and receiving units, efficiency of WPT was very high. In addition, in the case of the superconducting transmission-receiving coils, when coils matched 100% the efficiency was 30% and matched 25% the efficiency was 8%.

Transmission Efficiency of Dual-clutch Transmission in Agricultural Tractors (농업용 트랙터 듀얼 클러치 변속기의 동력전달 효율 분석에 관한 연구)

  • Moon, Seok Pyo;Moon, Sang Gon;Kim, Jae Seung;Sohn, Jong Hyeon;Kim, Yong Joo;Kim, Su Chul
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • The aim of this study was to conduct basic research on the development of a dual-clutch transmission(DCT) and automatic transmission for agricultural tractors. The DCT layout and the DCT simulation model were developed using commercial software. Power transmission efficiency of the DCT and component power loss were analyzed to verify the developed simulation model. Power loss analysis of the components was conducted according to previous studies and ISO(International Organization for Standardization) standards. The power transmission efficiency of the DCT simulation model was 68.4-91.5% according to the gear range. The power loss in the gear, bearing, and clutch DCT system components was 0.75-1.49 kW, 0.77-2.99 kW, and 5.24-10.52 kW, respectively. The developed simulation model not include the rear axle, differential gear, final reduction gear. Therefore actual power transmission efficiency of DCT will be decreased. In a future study, an actual DCT can be developed through the simulation model in this study, and optimization design of DCT can be possible by comparing simulation results and actual vehicle test.