Signal Transmission Scheme for Power Line Communications for Internet of Energy

에너지 인터넷을 위한 전력선 통신의 신호전송 기법

  • 황유민 (광운대학교 유비쿼터스 통신 연구실) ;
  • 선영규 (광운대학교 유비쿼터스 통신 연구실) ;
  • 김수환 ((주) 그리드위즈) ;
  • 김진영 (광운대학교 유비쿼터스 통신 연구실)
  • Received : 2017.12.13
  • Accepted : 2017.12.19
  • Published : 2017.12.31

Abstract

This paper proposes a transmission algorithm that optimizes transmission power and sub-channel allocation to maximize energy efficiency considering characteristics of the channel impedance of power lines in power line communication systems. Since the received power at the receiver is influenced by the characteristics of the power line channel, it is necessary to consider channel characteristics when developing a transmission strategy in a power line communication systems. In addition, the energy efficiency should be optimized while meeting the practical constraints, such as the maximum transmission power limit of the transmitter and minimum quality of service for each user. In the computer simulation, we confirm that the energy efficiency of the proposed algorithm is improved compared to baseline schemes.

본 논문은 전력선 통신 시스템에서 에너지 효율을 최적화하기 위해 송신 전력 및 부 채널 할당을 최적화하는 에너지 효율적인 자원 할당 알고리즘을 제안하였다. 제안한 알고리즘은 특히 수신기에 최대의 신호 전력을 전달하기 위해서 기존의 연구와 다르게 주파수에 따라 변하는 전력선 채널의 특성을 시스템 모델에서 고려하였다. 또한, 에너지 효율 함수를 최대화 할 때 송신기의 최대 신호전력 한계 및 최소 데이터 전송률 만족 등 현실적인 제한조건들을 고려하여 전송 알고리즘을 설계하였다. 따라서 본 논문에서는 비선형 분수 프로그래밍과 라그랑지 이중 기법을 이용하여 최적값을 산출하였고 시뮬레이션을 통해 베이스라인 기법 대비 제안한 알고리즘의 에너지 효율 성능의 우수성을 확인하였다.

Keywords

References

  1. H. Sun et al., "Green data transmission in power line communications," Proc. IEEE GLOBECOM, pp. 3702-3706, Anaheim, CA, Dec. 2012.
  2. Z. Xu, M. Zhai, and Y. Zhao, "Optimal resource allocation based on resource factor for power-line communication systems," IEEE Trans. Power Del., vol. 25, no. 2, pp. 657-666, Apr. 2010.. https://doi.org/10.1109/TPWRD.2009.2035364
  3. F. Pancaldi, F. Gianaroli, and G. M. Vitetta, "Bit and Power Loading for Narrowband Indoor Powerline Communications," IEEE Trans. Commun., vol. 64, no. 7, pp. 3052-3063, July 2016. https://doi.org/10.1109/TCOMM.2016.2575838
  4. J. K. Seo, J. Jin, J. Y. Kim, and J. J. Lee, "Automated residential demand response based on advanced metering infrastructure network," Int. J. Distributed Sensor Networks, vol. 2016, pp. 1-10, 2016.
  5. A. M. Tonello, "Wideband impulse modulation and receiver algorithms for multiuser power line communications," EURASIP J. Advances in Signal Process. 2007, vol. 2007, no. Article ID 96747, Jan. 2007.
  6. M. Zimmermann and K. Dostert, "A multipath model for the powerline channel,"IEEE Trans. Commun., vol. 50, no. 4, pp. 553-559, Apr. 2002. https://doi.org/10.1109/26.996069
  7. T. Esmailian et al., "In-building power lines as high-speed communication channels: Channel characterization and a test channel ensemble," Int. J. Commun. Syst., vol. 16, pp. 381-400, 2003. https://doi.org/10.1002/dac.596
  8. A. Missiaggia et al., "PLC channel estimation based on pilots signal for OFDM modulation: A review,"Latin America Transactions IEEE (Revista IEEE America Latina), vol.12, no.4, pp. 580-589, June 2014. https://doi.org/10.1109/TLA.2014.6868858
  9. Federal Standard 1037C, "Telecommunications: Glossary of telecommunication terms," National Communication System Technology & Standards Division, 1991.
  10. W. Bakkali et al., "A measurement- based model of energy consumption for PLC modems," Proc. Int. Symp. Power Line Commun. and its App. (ISPLC), Glasgow, Scotland, 2014.
  11. M. Biagi, V. Polli, and T. Patriarca, "Power-constrained physical-layer goodput maximization for broadband power line communication links," IEEE Trans. Commun., vol. 59, no. 3, pp. 695-700, Mar. 2011. https://doi.org/10.1109/TCOMM.2011.122110.090426
  12. W. Dinkelbach, "On nonlinear fractional programming," Manage. Sci., vol. 13, pp. 492-498, Mar. 1967. https://doi.org/10.1287/mnsc.13.7.492