• 제목/요약/키워드: power transaction

Search Result 241, Processing Time 0.021 seconds

New Soft-Switching Current Source Inverter for a Photovoltaic Power System

  • Han, Byung-Moon;Kim, Hee-Jung;Baek, Seung-Taek
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.37-43
    • /
    • 2003
  • This paper proposes a soft-switching current source inverter for a photovoltaic power system. The proposed inverter has an H-type switched-capacitor module composed of two semiconductor switches, two diodes, and an LC resonant circuit. The operation of the proposed system was analyzed by a theoretical approach with equivalent circuits and was verified by computer simulations with SPICE and experimental implementation with a hardware prototype. The proposed system could be effectively applied for the power converter of photovoltaic power system interconnected with the AC power system.

Over Current Protection Schemes for Active Filters with Series Compensators

  • Lee, Woo-Cheol;Lee, Taeck-Kie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.134-145
    • /
    • 2004
  • This paper presents and analyses protection schemes for a series active compensator, which consists of a Unified Power Quality Conditioner (UPQC) or a hybrid active power filter. The proposed series active compensator operates as a high impedance "k(D)" for the fundamental components of the power frequency during over current conditions in the distribution system. Two control strategies are proposed in this paper. The first strategy detects the fundamental source current using the p-q theory. The second strategy detects the fundamental component of the load current in the Synchronous Reference Frame (SRF). When over currents occur in the power distribution system momentarily, the proposed schemes protect the series active compensator without the need for additional protection circuits, and achieves excellent transient response. The validity of the proposed protection schemes is investigated through simulation and compared with experimental results using a hybrid active power filter systems.

Unity Power Factor Control of SRM Drive

  • Park, Sung-Jun;Lee, Dong-Hee;Ahn, Jin-Woo;Kim, Cheul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.193-199
    • /
    • 2001
  • This paper suggests a novel single-stage drive for a switched reluctance motor (SRM) to achieve sinusoidal, near unity power factor input currents. The proposed drive is very simple without additional active switch. As a single-stage approach, which combines a DC link capacitor used as dc source and a drive used for driving the motor into one power stage, a simple structure and low cost drive in implemented. A prototype drive for an 8/6 pole SRM equipping a suitable encoder is designed to evaluate the proposed topology. Also subscription control algorithm is presented. The characteristics and validity of the proposed circuit will be discussed in depth through the experimental results.

  • PDF

A New Dispatch Scheduling Algorithm Applicable to Interconnected Regional Systems with Distributed Inter-temporal Optimal Power Flow (분산처리 최적조류계산 기반 연계계통 급전계획 알고리즘 개발)

  • Chung, Koo-Hyung;Kang, Dong-Joo;Kim, Bal-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1721-1730
    • /
    • 2007
  • SThis paper proposes a new dispatch scheduling algorithm in interconnected regional system operations. The dispatch scheduling formulated as mixed integer non-linear programming (MINLP) problem can efficiently be computed by generalized Benders decomposition (GBD) algorithm. GBD guarantees adequate computation speed and solution convergency since it decomposes a primal problem into a master problem and subproblems for simplicity. In addition, the inter-temporal optimal power flow (OPF) subproblem of the dispatch scheduling problem is comprised of various variables and constraints considering time-continuity and it makes the inter-temporal OPF complex due to increased dimensions of the optimization problem. In this paper, regional decomposition technique based on auxiliary problem principle (APP) algorithm is introduced to obtain efficient inter-temporal OPF solution through the parallel implementation. In addition, it can find the most economic dispatch schedule incorporating power transaction without private information open. Therefore, it can be expanded as an efficient dispatch scheduling model for interconnected system operation.

A N-Player Game Theoretic Study on Power Transaction Analysis in a Competitive Market (N-Player 게임이론을 이용한 전력시장의 전력거리 해석)

  • Park, Jong-Bae;Joung, Man-Ho;Kim, Balho H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.403-405
    • /
    • 2000
  • This paper presents a N-player game theory application for analyzing power transactions in a deregulated energy marketplace such as PoolCo, where, participants, especially, generating entities, maximize their net profits through optimal bidding strategies (i.e., bidding prices and bidding generations). In this paper, the electricity market for power transactions is modeled as a non-cooperative. N-player game with complete information, where the solution is determined in a continuous strategy domain having recourse to the Nash equilibrium idea.

  • PDF

Mixed Strategy of Nash Equilibrium in Power Transaction With Constraints (전력거래에서 제약조건이 고려된 내쉬 균형점의 복합전략 연구)

  • Lee, Gwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.196-201
    • /
    • 2002
  • An important aspect of the study of power system markets involves the assessment of strategic behavior of participants for maximizing their profits. In models for imperfect competition of a deregulated system, the key tack is to find the Nash equilibrium. When the constraints are not considered in the power market, the equilibrium has the form of a pure strategy. However, the constraints are considered, the equilibrium has the form of a mired strategy. In this paper the bimatrix game approach leer finding a mixed equilibrium is analyzed. The Nash equilibrium of a mixed strategy will be used adequately for the analysis of market power.

Phasor Discrete Particle Swarm Optimization Algorithm to Configure Micro-grids

  • Bae, In-Su;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • The present study presents the Phasor Discrete Particle Swarm Optimization (PDPSO) algorithm, an effective optimization technique, the multi-dimensional vectors of which consist of magnitudes and phase angles. PDPSO is employed in the configuration of micro-grids. Micro-grids are concepts of distribution system that directly unifies customers and distributed generations (DGs). Micro-grids could supply electric power to customers and conduct power transaction via a power market by operating economic dispatch of diverse cost functions through several DGs. If a large number of micro-grids exist in one distribution system, the algorithm needs to adjust the configuration of numerous micro-grids in order to supply electric power with minimum generation cost for all customers under the distribution system.

Performances of SR Drive for Electrical Power Steering Systems

  • Ahn, Jin-Woo;Lee, Dong-Hee;An, Young-Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.188-194
    • /
    • 2003
  • The SRM (Switched Reluctance Motor) has a more inherent simple mechanical structure, greater ruggedness and higher efficiency than a conventional AC motor. It is for these reasons that SRM is widely applied in an extensive range of industrial applications. In this paper, SRM is designed and analyzed for EPS (Electrical Power Steering) application. Electrical power steering in a vehicle plays the role of reducing a driver's handling control power. For proper design, a FEM analysis is implemented according to the rotor structure. Using both a FEM and a magnetic circuit analysis, a designed motor is simulated and tested. The effectiveness of the suggested SRM drive for EPS application is verified by the prototype motor drive tests.

Estimation of Electricity Price of the Imported Power via Interstate Electric Power System in North-East Asia (동북아 전력계통 연계를 통한 융통전력 도입 시 가격상한 수준에 대한 분석)

  • Kim, Hong-Heun;Chung, Koo-Hyung;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.128-132
    • /
    • 2006
  • Interstate electric power system, as an alternative for energy cooperation under regional economic bloc, has been hotly debated before progressing the restructure in electric power industry and rapidly expanded in many regions after 1990s. Especially, since northeast asia has strong supplementation in resource, load shape, fuel mix etc., electric power system interconnection in this region may bring considerable economic benefits. Moreover, since Korean electric power system has a great difficulty in a geographical condition to interrupt electricity transaction with other countries, it has been expanded as an independent system to supply all demand domestically. As a result, Korean electric power system makes considerable payment for maintaining system security and reliability and expands costly facilities to supply a temporary summer peak demand. Under this inefficiency, if there are electricity transactions with Russia via the North Korea route then economic electric power system operation nay be achieved using seasonal and hourly differences in electricity price and/or load pattern among these countries. In this paper, we estimate price cap of transacted electricity via interstate electric power system in northeast asia. For this study, we perform quantitative economic analysis on various system interconnection scenarios.

Analysis on the Operational Characteristics of the Combined Generation System with Power Storage Apparatus that Apply Microcontroller

  • Lim, Jung-Yeol;Yoon, Seok-Am;Cha, In-Su
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.24-30
    • /
    • 2002
  • The developments of the solar and the wind power energy are necessary since the future alternative, energies that have no pollution and no limitation are restricted. Currently power generation system of MW scale has been developed, but it still has a flew faults with the weather condition. In order to solve these existing problem combined generation system of photovoltaic(400W) and wind power generation system(400W) was suggested. It combines wind power and solar energy to have the supporting effect from each other. However, since even combined generation system cannot always generate stable output with ever-changing weather condition, power storage apparatus that uses elastic energy of spiral spring to combined generation system was also added far the present study. In an experiment, when output of combined generation system gets lower than 12V(charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates in small scale generator.