• Title/Summary/Keyword: power plant modeling

Search Result 375, Processing Time 0.028 seconds

A Controller Design of a Magnetic Levitation System (자기부상 시스템의 제어기 설계)

  • Ha, Y.W.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.62-71
    • /
    • 2000
  • A mathematical modeling for a magnetic levitation system is proposed using the Taylor series expansion of differential function for obtaining linearity. It is confirmed that this kind of linear approximation method can be used to the modeling of a magnetic levitation system. The two-degree-of-freedom optimal servo system for a constant reference signal is proposed using the LQ optimization technique. An additional state feedback is introduced at the output of the integrator to cancel the integral action for reference signal if there is no modeling error of the plant and no disturbance input to the plant. When the modeling error or the disturbance input exists, the integral effect appears. The system has a free parameter which can b used to tune the effect of the integral compensation.

  • PDF

Functional Modeling of Nuclear Power Plant Using Multilevel Flow Modeling Concept

  • Park, Jin-Kyun;Chang, Soon-Heung;Cheon, Se-Woo;Lee, Jung-Woon;Sim, Bong-Shick
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.340-345
    • /
    • 1996
  • Because of limited resources of time and information processing capability during abnormal situation, diagnosis is difficult tasks in nuclear power plant (NPP) operators. Moreover since minimizing of adverse consequences according to process abnormalities is vital for the safety of NPP, introducing of diagnosis support systems have particularly emphasized. However, considerable works to develop effective diagnostic support system are not sufficiently fulfilled because of the complexity of NPP is one of the major problems. To cope with this complexity, a lot of model-based diagnosis support systems have considered and implemented worldwide. In this paper, as a prior step to development of model-based diagnosis support systems, primary side of pressurized water reactor is functionally modeled by multilevel flow modeling (MFM) concept. MFM is suitable for complex system modeling and for diagnosis of abnormalities. Furthermore, knowledge-based diagnosis process, of NPP operator could be supported because this diagnosis strategy can represent operator's one.

  • PDF

A Study of Thermal Power Plant Feedwater System with Modeling and L.Q.Controller (화력발전소 보일러 급수제어 계통의 모델링과 L.Q. 제어기 적용에 관한 연구)

  • 서진헌;황재호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1281-1287
    • /
    • 1990
  • A new thermal power plant feed-water system model, which is based on Astrom, is presented. Astrom's model has some difficulties in applying to practical systems because it is not able to measure the heat and energy transfer loss. Hence, in order to make up for these difficulties, the Gas State Equation is added to the model. Computer simulations are performed to show the validity of the new model at thermal power plant with practical boiler operating data and to verify the L.Q. controller effect on boiler drum level system.

A Full Scale Fossil Power Plant Simulator For Hadong (하동 화력 발전소 전범위 시뮬레이터 개발)

  • 김성호;김종현;조창호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.204-204
    • /
    • 2000
  • This paper describes the development of training simulator for Hadong fossil Power Plant. The simulator was developed to train operator, test new control Logic and evaluate alternative operating procedure for expert engineer of control system. The most control logics such as Siemens TELEPERM ME and GE Mark V are translated directly from microprocessors. Those HMI are also directly emulated. The simulation was performed by ProTRAX modeling software. The paper discusses the configuration of simulator and the simulation results of 30%, 50%, 75% and 100% normal rate load test.

  • PDF

A Study on Dynamic Modeling of Photovoltaic Power Generator Systems using Probability and Statistics Theories (확률 및 통계이론 기반 태양광 발전 시스템의 동적 모델링에 관한 연구)

  • Cho, Hyun-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1007-1013
    • /
    • 2012
  • Modeling of photovoltaic power systems is significant to analytically predict its dynamics in practical applications. This paper presents a novel modeling algorithm of such system by using probability and statistic theories. We first establish a linear model basically composed of Fourier parameter sets for mapping the input/output variable of photovoltaic systems. The proposed model includes solar irradiation and ambient temperature of photovoltaic modules as an input vector and the inverter power output is estimated sequentially. We deal with these measurements as random variables and derive a parameter learning algorithm of the model in terms of statistics. Our learning algorithm requires computation of an expectation and joint expectation against solar irradiation and ambient temperature, which are analytically solved from the integral calculus. For testing the proposed modeling algorithm, we utilize realistic measurement data sets obtained from the Seokwang Solar power plant in Youngcheon, Korea. We demonstrate reliability and superiority of the proposed photovoltaic system model by observing error signals between a practical system output and its estimation.

MIT PEBBLE BED REACTOR PROJECT

  • Kadak, Andrew C.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.95-102
    • /
    • 2007
  • The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

Logic Processor Modeling of a Steam Generator in Nuclear Power Plant (논리 프로세서에 의한 원자력 발전소 증기발생기 모델링)

  • Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.1-11
    • /
    • 1998
  • In this work, we propose a modeling method based on an artifical intelligence technique for a stem generator in a nuclear power plant. Modeling the steam generator is known to be difficult due to several facts; especially, the dynamics of the steam generator is nonminimum phase which is mainly caused by the swell and shrink phenomena from thermal effects. In order to overcome this difficulty, we adopt so-called logic processor whose structure itself has a logical meaning to be easily established and also efficiently learned. Such a manner, we could derive an useful model simulating the dynamics of the steam generator in a nuclear power plant.

  • PDF

Additional power conservation in 200W power plant with the application of high thermal profiled cooling liquid & improved deep learning based maximum power point tracking algorithm

  • Raj G. Chauhan;Saurabh K. Rajput;Himmat Singh
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.185-202
    • /
    • 2022
  • This research work focuses to design and simulate a 200W solar power system with electrical power conservation scheme as well as thermal power conservation modeling to improve power extraction from solar power plant. Many researchers have been already designed and developed different methods to extract maximum power while there were very researches are available on improving solar power thermally and mechanically. Thermal parameters are also important while discussing about maximizing power extraction of any power plant. A specific type of coolant which have very high boiling point is proposed to be use at the bottom surface of solar panel to reduce the temperature of panel in summer. A comparison between different maximum power point tracking (MPPT) technique and proposed MPPT technique is performed. Using this proposed Thermo-electrical MPPT (TE-MPPT) with Deep Learning Algorithm model 40% power is conserved as compared to traditional solar power system models.

STATE TOKEN PETRI NET MODELING METHOD FOR FORMAL VERIFICATION OF COMPUTERIZED PROCEDURE INCLUDING OPERATOR'S INTERRUPTIONS OF PROCEDURE EXECUTION FLOW

  • Kim, Yun Goo;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.929-938
    • /
    • 2012
  • The Computerized Procedure System (CPS) is one of the primary operating support systems in the digital Main Control Room. The CPS displays procedure on the computer screen in the form of a flow chart, and displays plant operating information along with procedure instructions. It also supports operator decision making by providing a system decision. A procedure flow should be correct and reliable, as an error would lead to operator misjudgment and inadequate control. In this paper we present a modeling for the CPS that enables formal verification based on Petri nets. The proposed State Token Petri Nets (STPN) also support modeling of a procedure flow that has various interruptions by the operator, according to the plant condition. STPN modeling is compared with Coloured Petri net when they are applied to Emergency Operating Computerized Procedure. A converting program for Computerized Procedure (CP) to STPN has been also developed. The formal verification and validation methods of CP with STPN increase the safety of a nuclear power plant and provide digital quality assurance means that are needed when the role and function of the CPS is increasing.

PSS Modeling and Cerification for #6 Generator of Boryong T/P (보령 T/P 6호기 PSS 모델링과 검증)

  • Choi, H.K.;Kim, D.J.;Moon, Y.H.;Kim, Y.H.;Yoon, Y.B.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.31-34
    • /
    • 2002
  • It studied modelling about employing analog PSS in domestic 500MW grade standard thermoelectric power plant in this paper. Modeling and parameters were verified by simulation of PSS response characteristics measured in AVR step examination and using power plant system model parameters decided by generator characteristics test. Through this PSS modelling research, contributed in domestic electrical power system small signal stability as that do modelling to be possible exact analysis of power system.

  • PDF