• Title/Summary/Keyword: power plant modeling

Search Result 375, Processing Time 0.027 seconds

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

$CO_2$ Removal Process Analysis and Modeling for 300MW IGCC Power Plant (300MW급 IGCC Power Plant용 $CO_2$ 제거공정 분석 및 모델링)

  • Jeon, Jinhee;Yoo, Jeongseok;Paek, Minsu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.130.2-130.2
    • /
    • 2010
  • 2020년까지 대형 CCS (Carbon Capture and Storage) Demo Plant 시장 (100MW 이상) 이 형성될 전망이다. 발전 부문에서 대규모 CCS 실증 프로젝트는 총 44개이며 연소전(41%), 연소후(28%), 순산소(3%) 프로젝트가 계획되어 있다. 순산소 연소 기술은 실증진입단계, 연소후(USC) 기술은 상용화 추진단계, 연소전 (IGCC) 기술은 실증완료 이후 상용화 진입 단계이다. IGCC 발전의 석탄가스화 기술은 타 산업분야에 서 상용화 되어있어 기술신뢰성이 높다. IGCC 단위설비 기술 개발을 통한 성능개선 및 비용절감에 대한 잠재력을 가지고 있기 때문에 미래의 석탄발전기술로 고려되고 있다. IGCC 기술은 가장 상용화에 앞서있지만 아직까지 IGCC+CCS 대형 설비가 운전된 사례가 전 세계적으로 없으며 미국 EPRI 등에서 Feasibility Study 단계이다. 현재 국책과제로 수행중인 300MW급 태안 IGCC 플랜트를 대상으로 향후 CCS 설비를 적용했을 경우에 대해 기술 타당성 검증을 목적으로 IGCC+CCS 모델링을 수행하였다. 모델링은 스크러버 후단의 합성 가스를 대상으로 하였다. Water Gas Shift Reaction (WGSR) 공정 및 Selexol 공정을 구성하여 최종 단에서 수소 연료를 생산할 수 있도록 하였다. WGSR 공정은 Co/Mo 촉매반응기로 구성되었다. WGSR 모델링을 통하여 주입되는 스팀량 (1~2 mol-steam/mol-CO) 및 온도 변화 ($220-550^{\circ}C$)에 따른 CO가스의 전환율을 분석하여 경제적인 설계조건을 선정하였다. Selexol 공정은 $H_2S$ Absorber, $H_2S$ Stripper, $CO_2$ Absorber, $CO_2$ Flash Drum으로 구성된다. Selexol 공정의 $CO_2$$H_2S$ 선택도를 분석 하였으며 단위 설비별 설계 조건을 예측하였다. 모델링 결과 59kg/s의 합성가스($137^{\circ}C$, 41bar, 가스 조성은 $CO_2$ 1.2%, CO 57.2%, $H_2$ 23.2%, $H_2S$ 0.02%)가 WGSR Process를 통해 98% CO가 $CO_2$ 로 전환되었다. Selexol 공정을 통해 $H_2S$ 제거율은 99.9%, $CO_2$제거율은 96.4%이었고 14.9kg/s의 $H_2$(86.9%) 연료를 얻었다. 모델링 결과는 신뢰성 검증을 통해 IGCC+CCS 전체 플랜트의 성능예측과 Feasibility Study를 위한 자료로 활용될 예정이다.

  • PDF

Atmospheric Dispersion Characteristics of Radioactive Materials according to the Local Weather and Emission Conditions

  • An, Hye Yeon;Kang, Yoon-Hee;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.315-327
    • /
    • 2016
  • Background: This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Materials and Methods: Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the $^{137}Cs$, using the WRF/HYSPLIT modeling system. Results and Discussion: The highest mean concentration of $^{137}Cs$ occurred at 0900 LST under the ME4_1 (main wind direction: SSW, daily average wind speed: $2.8ms^{-1}$), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, $4.1ms^{-1}$), the highest mean concentration of $^{137}Cs$ occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4_4 (S, $2.7ms^{-1}$), the highest mean concentration of $^{137}Cs$ occurred at 0300 LST because $^{137}Cs$ stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1_3 and EM2_3 that had the maximum total number of particles showed the widest dispersion of $^{137}Cs$, while its highest mean concentration was estimated under the EM1_1 considering the relatively narrow dispersion and high emission rate. Conclusion: This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of $^{137}Cs$ concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where $^{137}Cs$ is dispersed, the emission rate of $^{137}Cs$, and the number of emitted particles.

Simulation and Control of the Molten Carbonate System using Aspen $Dynamics^{TM}$ and ACM (Aspen $Dynamics^{TM}$와 ACM을 이용한 용융탄산염 연료전지 시스템의 모사 및 제어)

  • Jeon, Kyoung Yein;Kwak, Ha Yeon;Kyung, Ji Hyun;Yoo, Ahrim;Lee, Tae Won;Lee, Gi Pung;Moon, Kil Ho;Yang, Dae Ryook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.423-431
    • /
    • 2011
  • Recentincreasing awareness of the environmental damage caused by the $CO_2$ emission of fossil fuelsstimulated the interest in alternative and renewable sources of energy. Fuel cell is a representative example of hydrogen energy utilization. In this study, Molten Carbonate Fuel Cell system is simulated by using $Aspen^{TM}$. Stack model is consisted of equilibrium reaction equations using $ACM^{TM}$(Aspen Custom Modeler). Balance of process of fuel cell system is developed in Aspen $Plus^{TM}$ and simulated at steady-state. Analysis of performance of the system is carried out by using sensitivity analysis tool with main operating parameters such as current density, S/C ratio, and fuel utilization and recycle ratio.In Aspen $Dynamics^{TM}$, dynamics of MCFC system is simulated with PID control loops. From the simulation, we proposed operation range which generated maximum power and efficiency in MCFC power plant.

Study of Soil Erosion for Evaluation of Long-term Behavior of Radionuclides Deposited on Land (육상 침적 방사성 핵종의 장기 거동 평가를 위한 토사 침식 연구)

  • Min, Byung-Il;Yang, Byung-Mo;Kim, Jiyoon;Park, Kihyun;Kim, Sora;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) resulted in the deposition of large quantities of radionuclides over parts of eastern Japan. Radioactive contaminants have been observed over a large area including forests, cities, rivers and lakes. Due to the strong adsorption of radioactive cesium by soil particles, radioactive cesium migrates with the eroded soil, follows the surface flow paths, and is delivered downstream of population-rich regions and eventually to coastal areas. In this study, we developed a model to simulate the transport of contaminated sediment in a watershed hydrological system and this model was compared with observation data from eroded soil observation instruments located at the Korea Atomic Energy Research Institute. Two methods were applied to analyze the soil particle size distribution of the collected soil samples, including standardized sieve analysis and image analysis methods. Numerical models were developed to simulate the movement of soil along with actual rainfall considering initial saturation, rainfall infiltration, multilayer and rain splash. In the 2019 study, a numerical model will be used to add rainfall shield effect by trees, evaporation effect and shield effects of surface water. An eroded soil observation instrument has been installed near the Wolsong nuclear power plant since 2018 and observation data are being continuously collected. Based on these observations data, we will develop the numerical model to analyze long-term behavior of radionuclides on land as they move from land to rivers, lakes and coastal areas.

Verification of the Viability of Equipotential Switching Direct Current Potential Drop Method for Piping Wall Loss Monitoring with Signal Sensitivity Analysis (등전위 교번식 직류전위차법의 신호 정밀도 검증을 통한 배관 감육 진단 기술에의 적용성 검증)

  • Ryu, Kyung-Ha;Hwang, Il-Soon;Kim, Ji-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.191-198
    • /
    • 2008
  • Flow accelerated corrosion (FAC) phenomenon of low alloy carbon steels in nuclear power plant has been known as one of major degradation mechanisms. It has a potential to cause nuclear pipe rupture accident which may directly impact on the plant reliability and safety. Recently, the equipotential switching direct current potential drop (ES-DCPD) method has been developed, by the present authors, as a method to monitor wall loss in a piping. This method can rapidly monitor the thinning of piping, utilizing either the wide range monitoring (WiRM) or the narrow range monitoring (NaRM) technique. WiRM is a method to monitor wide range of straight piping, whereas NaRM focuses significantly on a narrow range such as an elbow. WiRM and NaRM can improve the reliability of the current FAC screening method that is based on computer modeling on fluid flow conditions. In this paper, the measurements by ES-DCPD are performed with signal sensitivity analyses in the laboratory environment for extended period and showed the viability of ES-DCPD for real plant applications.

A Study on Fault Characteristics of Wind Power in Distribution Feeders (풍력발전(DFIG)의 고압배전선로의 사고특성 해석에 관한 연구)

  • Kim, So-Hee;Kim, Byung-Ki;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1288-1295
    • /
    • 2012
  • Korea Ministry of Knowledge Economy has estimated that wind power (WP) will be occupied 37% in 2020 and 42% in 2030 of the new energy sources, and also green energies such as photovoltaic (PV) and WP are expected to be interconnected with the distribution system because of Renewable Portfolio Standard (RPS) starting from 2012. However, when a large scale wind power plant (over 3[MW]) is connected to the traditional distribution system, protective devices (mainly OCR and OCGR of re-closer) will be occurred mal-function problems due to changed fault currents it be caused by Wye-grounded/Delta winding of interconnection transformer and %impedance of WP's turbine. Therefore, when Double-Fed Induction Generator (DFIG) of typical WP's Generator is connected into distribution system, this paper deals with analysis three-phase short, line to line short and a single line ground faults current by using the symmetrical components of fault analysis and PSCAD/EMTDC modeling.

A Study on Protection Method of Energy Storage System for Lithium-ion Battery Using Surge Protection Device(SPD) (SPD를 이용한 리튬이온전지용 전기저장장치의 보호방안에 관한 연구)

  • Hwang, Seung-Wook;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.568-574
    • /
    • 2020
  • Recently, the installation of energy storage systems (ESSs) that have a range of functions, such as power stabilization of renewable energy sources, demand control, and frequency regulation, has been increasing annually. On the other hand, since the fire accident of ESS occurred at Gochang Power Test Center in August 2017, 29 fire accidents with significant property losses have occurred, including the Gyeongsan substation and Kunsan PV power plant. Because these fire accidents of ESS are arisen regardless of the season and capacity of ESS, an analysis of the fault characteristics in ESS is required to confirm the causes of the fire accidents accurately and ensure the safety of the ESS. This paper proposes the modeling of ESS using PSCAD/EMTDC S/W to identify the fault characteristics and ensure the safety of the ESS. From the simulation results of fault characteristics based on various scenarios, it is clear that the insulation of ESS may be breakdown due to the largely occurring CMV (common mode voltage). Furthermore, the CMV between the PCS and battery can be reduced, and the insulation breakdown of ESS can be prevented if an SPD (surge protect device) is installed in the battery and PCS sides, respectively.

Cracking Behavior of Containment Wall of Nuclear Power Plant Reactor (원자력 발전소 격납건물 벽체의 균열거동)

  • Cho, Jae-Yeol;Kim, Nam-Sik;Cho, Nam-So;Choi, In-Kil
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • Tension tests of six half-thickness concrete containment wall elements were conducted as a part of Korea Atomic Energy Research Institute (KAERI) program. The aim of the KAERI test program is to provide a test-verified analytical method for estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The data from the tests reported herein should be useful for benchmarking analytical method that require modeling of material behavior including concrete cracking behavior and reinforcement/concrete interaction exhibited by the test. Major test variable is compressive strength of concrete, and its effect on the behavior of prestressed concrete panel subjected to biaxial tension is investigated.

Intelligent Fuzzy Modeling and Robust Digital fuzzy Control for Level Control in the Steam Generator of a Nuclear Power Plant (원전 증기발생기의 수위제어를 위한 지능형 퍼지 모델링 및 강인한 디지털 퍼지 제어기 설계)

  • Joo, Young-Hoon;Cho, Kwang-Lae;Kim, Joo-Won;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.311-316
    • /
    • 2002
  • Difficulties of the level control in the steam generator are increased due to their nonlinear characteristics. Futhermore, parameter uncertainties of the steam generator is related with control performance and stability. The efficiency of digital conversion in control systems is proved in many recent researches. In order to solve this problem, this paper suggests robust digital fuzzy controller design methodologies of the steam generator which have unstable parameters. Takagi-Sugeno (TS) fuzzy model is used to construct a fuzzy model which has uncertainties in the steam generator. In designing procedure, intelligent digital redesign method is used to control the nonlinear system. This digital controller keeps the performance of the analog controller. Simulation examples are included for ensuring the proposed control method.