• Title/Summary/Keyword: power penalty

Search Result 181, Processing Time 0.031 seconds

40 Gbps All-Optical 3R Regeneration and Format Conversion with Related InP-Based Semiconductor Devices

  • Jeon, Min-Yong;Leem, Young-Ahn;Kim, Dong-Churl;Sim, Eun-Deok;Kim, Sung-Bock;Ko, Hyun-Sung;Yee, Dae-Su;Park, Kyung-Hyun
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.633-640
    • /
    • 2007
  • We report an experimental demonstration of 40 Gbps all-optical 3R regeneration with all-optical clock recovery based on InP semiconductor devices. We also obtain alloptical non-return-to-zero to return-to-zero (NRZ-to-RZ) format conversion using the recovered clock signal at 10 Gbps and 40 Gbps. It leads to a good performance using a Mach-Zehnder interferometric wavelength converter and a self-pulsating laser diode (LD). The self-pulsating LD serves a recovered clock, which has an rms timing jitter as low as sub-picosecond. In the case of 3R regeneration of RZ data, we achieve a 1.0 dB power penalty at $10^{-9}$ BER after demultiplexing 40 Gbps to 10 Gbps with an eletroabsorption modulator. The regenerated 3R data shows stable error-free operation with no BER floor for all channels. The combination of these functional devices provides all-optical 3R regeneration with NRZ-to-RZ conversion.

  • PDF

An Expert System for Short-Term Generation Scheduling of Electric Power Systems (전력계통의 단기 발전계획 기원용 전문가시스템)

  • Yu, In-Keun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.831-840
    • /
    • 1992
  • This paper presents an efficient short-term generation scheduling method using a rule-based expert/consulting system approach to assist electric energy system operators and planners. The expert system approach is applied to improve the Dynamic Programming(DP) based generation scheduling algorithm. In the selection procedure of the feasible combinations of generating units at each stage, automatic consulting on the manipulation of several constraints such as the minimum up time, the minimum down time and the maximum running time constraints of generating units will be performed by the expert/consulting system. In order to maximize the solution feasibility, the aforementioned constraints are controlled by a rule-based expert system, that is, instead of imposing penalty cost to those constraint violated combinations, which sometimes may become the very reason of no existing solution, several constraints will be manipulated within their flexibilities using the rules and facts that are established by domain experts. In this paper, for the purpose of implementing the consulting of several constraints during the dynamic process of generation scheduling, an expert system named STGSCS is developed. As a building tool of the expert system, C Language Integrated Production System(CLIPS) is used. The effectiveness of the proposed algorithm has been demonstrated by applying it to a model electric energy system.

  • PDF

PMD Tolerance of 10 Gbps Modulated Signals due to SOA-Induced Chirp in SOA Booster Amplifiers

  • Jang, Ho-Deok;Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.232-239
    • /
    • 2008
  • We investigated how the polarization-mode dispersion (PMD) tolerance was degraded by semiconductor optical amplifier (SOA)-induced chirp for the 10 Gb/s nonreturn-to-zero (NRZ), duobinary NRZ, return-to-zero (RZ), and carrier-suppressed RZ (CS-RZ) modulation formats. The power penalty was calculated as a measure of the system performance due to PMD for a given SOA-induced chirp. Considering only first-order PMD, all modulation formats have a similar PMD tolerance regardless of SOA-induced chirp. On the other hand, when both first- and second-order PMD are considered, the PMD tolerance of all modulation formats with the exception of the CS-RZ modulation format are degraded by SOA-induced chirp. Among all modulation formats considered here, the NRZ modulation format has the PMD tolerance with the highest sensitivity to SOA-induced chirp. When the peak-to-peak chirp induced by SOAs is $0.28{\AA}$, its PMD tolerance is degraded up to 4 dB for a differential group delay (DGD) of 50 ps. However, the PMD tolerance of the CS-RZ modulation format is largely unaffected by SOA-induced chirp.

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

Supercritical CO2-cooled fast reactor and cold shutdown system for ship propulsion

  • Kwangho Ju;Jaehyun Ryu;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1022-1028
    • /
    • 2024
  • A neutronics study of a supercritical CO2-cooled fast reactor core for nuclear propulsion has been performed in this work. The thermal power of the reactor core is 30 MWth and a ceramic UO2 fuel can be used to achieve a 20-year lifetime without refueling. In order to make a compact core with inherent safety features, the drum-type reactivity control system and folding-type shutdown system are adopted. In addition, we suggest a cold shutdown system using gadolinium as a spectral shift absorber (SSA) against flooding. Although there is a penalty of U-235 enrichment for the core embedded with the cold shutdown system, it effectively mitigates the increment of reactivity at the flooding of seawater. In this study, the neutronics analyses have been performed by using the continuous energy Monte Carlo Serpent 2 code with the evaluated nuclear data file ENDF/B-VII.1 Library. The supercritical CO2-cooled fast reactor core is characterized in view of important safety parameters such as the reactivity worth of reactivity control systems, fuel temperature coefficient (FTC), coolant temperature coefficient (CTC), and coolant temperature-density coefficient (CTDC). We can say that the suggested core has inherent safety features and enough flexibility for load-following operation.

Improvement of Bit Error Rate using the Optimal Parameters of Optical Phase Conjugator in WDM System with Non Zero - Dispersion Shifted Fiber (비영 분산 천이 광섬유를 갖는 WDM시스템에서 광 위상 공액기의 최적 파라미터를 이용한 비트 에러율 개선)

  • Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1854-1862
    • /
    • 2006
  • The numerical methods of finding out the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersions are prosed, which are able to effectively compensate overall channels in $8{\times}40Gbps$Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) as an optical fiber. And BER characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that the applying two induced optimal parameters into WDM system contribute to reduce power penalty to 4 times than that of WDM system with the conventional MSSI. Thus, the methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which generates a serious problem if it was not made but it is the condition in the case of applying the OPC into multi-channels WDM system.

Determination of the Optimal Contract Amount of the Hydropower Energy Considering the Reliabilities of Reservoir Inflows (저수지(貯水池) 유입량(流入量)의 신뢰도(信賴度)를 고려한 최적(最適) 계약전력량(契約電力量)의 결정(決定))

  • Kwon, Oh Hun;Yoo, Ju Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.141-149
    • /
    • 1993
  • Production of hydro-energy is random in its output amount due to the characteristics of the reservoir inflows. Therefore, it is necessary to provide the rationality in determining the amount of energy for a supply contract. This study presents a methodology for determining reasonably reliable amount of the energy supply considering the energy sale-incomes associated with the penalties which are subject to inflow-reliabilities. The objective function consists of the returns of energy sales and the risk-loss function to reflect statistically relevant risks. A range of the coefficient of the risk-loss function was figured out by its sensitivity analysis. The risk-loss herein means the penalty which should be paid by the energy supplier in case that the level of the energy supply is behind the contracted amount. And the reliability of reservoir inflow is defined by the exceedance probability of the inflow. The log-normal distribution was accepted as the probability density function of monthly inflows on the level of significance at 5%. Golden-ratio searching was applied to identify the optimal reliability and Incremental Dynamic Programming was used to maximize generation of the hydro-power energy in reservoir operation. The algorithm was the applied to the Daechung multi-purpose reservoir and hydro-power plant system in order to verify its usefulness.

  • PDF

The solar cell modeling using Lambert W-function (Lambert W 함수를 이용한 태양전지 모델링)

  • Bae, Jong-Guk;Kang, Gi-Hwan;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Geun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.278-281
    • /
    • 2011
  • This system can predict the maximum output about all illumination levels so that the PV system designer can design the system having the best efficiency. For the output prediction exact about the solar cell, that is the device the basis most in the PV system, the basis has to be in order to try this way. The solution based on Lambert W-function are presented to express the transcendental current-voltage characteristic containing parasitic power consuming parameters like series and shunt resistances. A simple and efficient method for the extraction of a single current-voltage (I-V) curve under the constant illumination level is proposed. With the help of the Lambert W function, the explicit analytic expression for I is obtained. And the explicit analytic expression for V is obtained. This analytic expression is directly used to fit the experimental data and extract the device parameters. The I-V curve of the solar cell was expressed through the modeling using Lambert W-function and the numerical formula where there is the difficulty could be logarithmically expressed This method expresses with the I-V curve through the modeling using Lambert W-function which adds other loss ingredients to the equation2 as to the research afterward. And the solar cell goes as small and this I-V curve can predict the power penalty in the system unit.

  • PDF

Performance Analysis of Initial Cell Search in WCDMA System over Rayleigh Fading Channels (레일리 페이딩 채널에서 W-CDMA 시스템의 초기 셀 탐색 성능 해석)

  • Song, Moon-Kyou
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • The 3-step cell search has been considered for fast acquisition of the scrambling code unique to a cell in the W -CDMA system. In this paper, the performance of the cell search scheme is analyzed in Rayleigh fading channels. And the system parameters for cell search scheme and the design parameters for the receivers are examined. The probabilities of detection, miss and false alarm for each step are derived in closed forms based on the statistics of CDMA noncoherent demodulator output. Through the analysis, the effect of threshold setting and post detection integration for each step is investigated, and the optimal values of the power allocation for the synchronization channels are also considered. The number of post-detection integrations for each step is a design parameter for the receiver, and the optimum values may depend on not only the power allocation for each channel related to the cell search, but the false alarm penalty time. It is shown that optimal values could be determined through the analysis. Also, the cumulative probability distribution of the average cell search time is obtained.

  • PDF

Improvement of System Performance Through Concentrated RDPS in WDM Transmission Links with Dispersion Management (분산 제어가 적용된 WDM 전송 링크에서 집중 RDPS를 통한 시스템 성능 개선)

  • Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.971-980
    • /
    • 2013
  • System performance improvement through the concentrated residual dispersion per span (RDPS) in special transmission fiber spans in optical transmission links with dispersion management (DM) for wavelength division multiplexed (WDM) transmission is investigated through the comparison with the performance in optical transmission links with uniform RDPS in every fiber spans. It is confirmed that, in optical links with RDPS of 0 ps/nm uniformly distributed in the rest fiber spans, if RDPS of 300 ps/nm and 1,320 ps/nm are concentrated in 5th-13th fiber spans and 6th-13th fiber spans, respectively, then the best performance is obtained. It is also confirmed that optimal net residual dispersion (NRD) controlled by precompensation and postcompensation are 10 ps/nm and -10 ps/nm, respectively, in all two cases, and the effective launching power range below 1 dB eye opening penalty (EOP) in the concentrated RDPS of 300 ps/nm and 1,320 ps/nm are improved by 2 dB and 6 dB than optical transmission links with the uniformly distributed RDPS, respectively.