• Title/Summary/Keyword: power oscillation

Search Result 542, Processing Time 0.028 seconds

Study on Flame Oscillations in Laminar Lift-off Butane Flames Diluted with Nitrogen (질소 희석된 부탄 부상화염에 있어서 화염진동에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.729-738
    • /
    • 2010
  • The characteristics of lifted butane flames diluted with nitrogen have been investigated experimentally in order to elucidate the mechanism of individual flame oscillation modes. Flame oscillations in laminar free-jet lift-off flames are classified into the following five regimes: a stabilized lift-off regime (I), a heat-loss-induced oscillation (II), a buoyancy-induced oscillation along with a heat-loss-induced oscillation (III), a combined form of an oscillation prior to blow-out and a heat-loss-induced oscillation (IV), and a combination of an oscillation prior to blow-out and a buoyancy-induced oscillation along with a heat-loss-induced oscillation (V). The characterization of the individual flame oscillations modes are presented and discussed using Strouhal numbers and their relevant parameters by the analysis of the power spectrum for temporal variation of the lift-off height.

TCSC control for Damping enhancement of intra-area Power Oscillation between Yeongdong and West sea power generation sites (영동권~서해안 발전단지간 연계선로의 전력진동 제동력 향상을 위한 TCSC 적용방안)

  • Hur, Yeon;Choi, Jin-San
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.224-225
    • /
    • 2011
  • 전력진동(Power Oscillation)은 전력이 0.05 Hz ~ 3.0 Hz의 저주파로 진동하는 현상으로서 계통고장 등의 원인으로 의해 취약한 송전선로에서 발생된다. 전력진동의 종류에는 inter-area mode, intra-area mode, local mode 등이 있는데, 국내 전력계통에서는 향후 영동권 원자력단지와 충남 서해안 화력단지 간을 연결하는 초고압 송전선로에서 intra-area mode의 전력진동이 발생할 가능성이 있다. TCSC를 적용하여 전력진동 제동효과를 얻을 수 있다. 본 논문에서 국내 전력계통에 TCSC를 설치함으로써 전력진동이 효과적으로 감소됨을 보인다. simulation 결과, 전력진동이 5% 수준으로 대폭 감소됨을 알 수 있다.

  • PDF

Analysis of Oscillation Modes in Discrete Power Systems Including GTO Controlled STATCOM by the RCF Method (GTO 제어 STATCOM을 포함하는 이산 전력시스템의 RCF 해석법에 의한 진동모드 해석)

  • Kim, Deok-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.829-833
    • /
    • 2007
  • In this paper, the RCF method is applied to analyze small signal stability of power systems including GTO controlled parallel FACTS equipments such as STATCOM. To apply the RCF method in power system small signal stability problems, state transition equations of generator, controllers and STATCOM are presented. In eigenvalue analysis of power systems, STATCOM is modelled as the equivalents voltage source model and the PWM switching circuit model. As a result of simulation, the RCF method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with periodically operated switching devices such as STATCOM.

A Study on the UPFC Dynamic Simulation Algorithm for Low Frequency Oscillation Studies (저주파 진동 해석을 위한 UPFC의 동적 시뮬레이션 알고리즘에 관한 연구)

  • Son, Kwang-Myoung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.502-508
    • /
    • 2000
  • This paper presents a dynamic simulation algorithm for studying the effect of United Power Flow Controller(UPFC) on the low frequency power system oscillations and transient stability studies. The proposed algorithm is a Newton-type one and uses current injection type UPFC model, which gives a fast convergence characteristics. The algorithm is applied to studying inter-area power oscillation damping enhancement of a sample two-area power system both in time domain and frequency domain. The case study results show that the proposed algorithm is very efficient and UPFC is very effective and robust against operating point change.

  • PDF

A Study on the Simulation of AlGaN/GaN HEMT Power Devices (AlGaN/GaN HEMT 전력소자 시뮬레이션에 관한 연구)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.55-58
    • /
    • 2014
  • The next-generation AlGaN/GaN HEMT power devices need higher power at higher frequencies. To know the device characteristics, the simulation of those devices are made. This paper presents a simulation study on the DC and RF characteristics of AlGaN/GaN HEMT power devices. According to the reduction of gate length from $2.0{\mu}m$ to $0.1{\mu}m$, the simulation results show that the drain current at zero gate voltage increases, the gate capacitance decreases, and the maximum transconductance increases, and thus the cutoff frequency and the maximum oscillation frequency increase. The maximum oscillation frequency maintains higher than the cutoff frequency, which means that the devices are useful for power devices at very high frequencies.

Eigenvalue Distribution Analysis Via UPFC for Enhancing Dynamic Stability Into the Multi-machine Power System (다기 전력시스템의 동적안정도 향상을 위해 UPFC 연계시 고유치 분포 해석)

  • 김종현;정창호;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.487-492
    • /
    • 2003
  • This paper analyzes an eigenvalue distribution and enhancement of the small signal stabiligy when an Unified Power Flow Controller (UPFC) modeling is connected into the multi-machine power system. Recently a lot of attention has been paid to the subject of dynamic stability. It deals with analysis of eigenvalue sensitivities with respect to parameters of UPFC Controller and damping of interarea and local electromechanical oscillation modes using UPFC Controller. It provides an insight and understanding in the basic characteristics of damping effects of UPFC Controller and shows a very stable frequency response via UPFC in test model. The series branch of the UPFC is designed to damp the power oscillation during transients, while the shunt branch aims at maintaining the bus voltage and angle. Comprehensive time-domain simulation studies using PSS/E show that the proposed robost UPFC controller can enhance the small signal stability efficiently in spite of the variations of power system operating conditions.

PWR Core Stability Against Xenon-Induced Spatial Power Oscillation (경수로심의 제논진동 해석)

  • Ho Ju Moon;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.51-63
    • /
    • 1982
  • Stability of a PWR core against xenon-induced axial power oscillation is studied using one-dimensional xenon trausient analysis code, DD1D, that has been developed and verified at KAERI. Analyzed by DD1D utilizing the Kori Unit 1 design and operating data is the sensitivity of axial stability in a PWR core to the changes in core physical parameters including core power level, moderator temperature coefficient, core inlet temperature, doppler power coefficient and core average turnup. Through the sensitivity study the Kori Unit 1 core is found to be stable against axial xenon oscillation at the beginning of cycle 1. But, it becomes less stable as turnup progresses, and unstable at the end of the cycle. Such a decrease in stability is mainly due to combined effect of changes in axial power distribution, moderator temperature coefficient and doppler power coefficient as core turnup progresses. It is concluded from the stability analysis of the Kori Unit 1 core that design of a large PWR with high power density and increased dimension can not avoid xenon-induced axial power instabilities to some extents, especially at the end of cycle.

  • PDF

Numerical Analysis on Flow Characteristics of a Vane Pump (Vane Pump의 유동 특성에 대한 수치 해석)

  • Lee, Sang-Hyuk;Jin, Bong-Yong;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.34-40
    • /
    • 2007
  • In this study, the characteristic of a vane pump of automotive power steering system is numerically analyzed. The vane pump changes the energy level of operation fluid by converting mechanical input power to hydraulic output. To simulate this mechanism, moving mesh technique is adopted. As a result, the flow rate and pressure are obtained by numerical analysis. The flow rate agrees well with the experimental data. Moreover, the variation and oscillation of the pressure around the rotating vane are observed. As a result of flow characteristics, The difference of pressure between both side of vane tip causes the back flow into the rotor. As the rotational velocity increases, the flow rate at the outlet and the pressure in the vane tip rises with higher amplitude of oscillation. In order to reducing the oscillation, the design of devices for decreasing the cross-area of the outlet part and returning the flow from the outlet to the inlet is required.

A Small Signal Modeling of Three-level Neutral-Point-Clamped Inverter and Neutral-Point Voltage Oscillation Reduction (3레벨 NPC인버터의 소신호 모델링과 중성점 전압 진동 저감)

  • Cho, Ja-Hwi;Ku, Nam-Joon;Joung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.407-414
    • /
    • 2014
  • This study proposes a control design for the grid output current and for reducing the neutral-point voltage oscillation through the small-signal modeling of the three-phase grid connected with a three-level neutral-point-clamped (NPC) inverter with LCL filter. The three-level NPC inverter presents an inherent problem: the neutral-point voltage fluctuation caused by the neutral-point current flowing in or out from the neutral point. The small signal modeling consists of averaging, dq0 transformation, perturbing, and linearizing steps performed on a three-phase grid connected to a three-level NPC inverter with LCL filter. The proposed method controls both the grid output and neutral-point currents at every switching period and reduces the neutral-point voltage oscillation. The validity of the proposed method is verified through simulation and experiment.

Novel Carrier-Based PWM Strategy of a Three-Level NPC Voltage Source Converter without Low-Frequency Voltage Oscillation in the Neutral Point

  • Li, Ning;Wang, Yue;Lei, Wanjun;Niu, Ruigen;Wang, Zhao'an
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.531-540
    • /
    • 2014
  • A novel carrier-based PWM (CBPWM) strategy of a three-level NPC converter is proposed in this paper. The novel strategy can eliminate the low-frequency neutral point (NP) voltage oscillation under the entire modulation index and full power factor. The basic principle of the novel strategy is introduced. The internal modulation wave relationship between the novel CBPWM strategy and traditional SPWM strategy is also studied. All 64 modulation wave solutions of the CBPWM strategy are derived. Furthermore, the proposed CBPWM strategy is compared with traditional SPWM strategy regarding the output phase voltage THD characteristics, DC voltage utilization ratio, and device switching losses. Comparison results show that the proposed strategy does not cause NP voltage oscillation. As a result, no low-frequency harmonics occur on output line-to-line voltage and phase current. The novel strategy also has higher DC voltage utilization ratio (15.47% higher than that of SPWM strategy), whereas it causes larger device switching losses (4/3 times of SPWM strategy). The effectiveness of the proposed modulation strategy is verified by simulation and experiment results.