• Title/Summary/Keyword: power oscillation

Search Result 541, Processing Time 0.029 seconds

The Research of Ultra Sonic Controller for Operating BLT (BLT를 구동하기 위한 초음파 제어기에 관한 연구)

  • 이종규;유태제
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.361-363
    • /
    • 2003
  • The purpose of this research was to discuss the system that operated Ultra sonic transducer of Pelzo electric ceramics type. The structure of controller was made up of digital signal part drive and feedback circuit, and half bridge inverter. Digital signal part was designed to gain the stable oscillation frequency by making consideration of pointed resonance bandwidth. We tried to control inverter by forward feedback condition because BLT based on the flexibility of elements such as temperature and load condition. In addition, transducer was operated as inverter in order to enhance its power efficiency. In this experiment, output voltage waveform and current waveform have been observed by using BLT.

  • PDF

A Study on the Starting Characteristic of Variable Speed Centrifugal Chiller (가변속 터보냉동기의 기동특성에 관한 연구)

  • Kim, Hee-Sun;Yun, Hong-Min;Na, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.512-513
    • /
    • 2012
  • The electric motor is essential to drive turbo machinery. In order to overcome the speed limitations of general motors, the inverter is used to perform high speed to tens of rpm. The high speed drives are widely used in many applications such as turbo blower, turbo centrifugal compressors, and pump using air bearing technique. Starting of high speed motor can cause step out, stall, oscillation of motor because the phase inductance is much smaller than that of ordinary motor. This paper studied on the starting characteristic of variable speed centrifugal chiller considering high speed motor characteristics. Finally, the superiority of the inverter is verified by experimental results.

  • PDF

Controller Design for a Nozzle-flapper Type Servo Valve with Electric Position Sensor

  • Istanto, Iwan;Lee, Ill-yeong;Huh, Jun-young;Lee, Hyun-cheol
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The control performance of hydraulic systems is basically influenced by the performance of electrohydraulic servo valve incorporated in a hydraulic control system. In this study, a control design was proposed to improve the control performance of a servo valve with a non-contact eddy current type position sensor. A mathematical model for the valve was obtained through an experimental identification process. A PI-D control together with a feedforward (FF) control was applied to the valve. To further improve the dynamic response of the servo valve, an input shaping filter (ISF) was incorporated into the valve control system. Finally, the effectiveness of the proposed control system was verified experimentally.

Constraints on scalar field models of dark energy.

  • Lee, Da-hee;Park, Chan-Gyung;Hwang, Jai-chan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2019
  • We consider dynamical dark energy models based on a minimally coupled scalar field with three different potentials: the inverse power-law, SUGRA and double exponential potentials. For each model, we derived perturbation initial conditions in the early epoch and performed the Markov Chain Monte Carlo (MCMC) analysis to explore the parameter space that is favored by the current cosmological observations like Planck CMB anisotropy, type Ia supernovae, and baryon acoustic oscillation data. The analysis has been done by using the modified CAMB/COSMOMC code in which the dynamical evolution of the scalar field perturbations are fully considered. The MCMC constraints on the cosmological as well as potential parameters are derived. In the talk we will present a progress report.

  • PDF

The Analysis of Gamma Oscillation and Phase-Synchronization for Memory Retrieval Tasks

  • Kim, Sung-Phil;Choe, Seong-Hyeon;Kim, Hyun-Taek;Lee, Seung-Hwan
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2010.05a
    • /
    • pp.37-41
    • /
    • 2010
  • The previous investigations of electroencephalogram (EEG) activity in the memory retrieval tasks demonstrated that event-related potentials (ERP) during recollection showed different durations and the peak levels from those without recollection. However, it has been unknown that recollection in memory retrieval also modulates high-frequency brain rhythms as well as establishes large-scale synchronization across different cortical areas. In this study, we examined the spectral components of the EEG signals, especially the gamma bands (20-80Hz), measured during the memory retrieval tasks. Specifically, we focused on two major spectral components: first, we evaluated the temporal patterns of the power spectral density before and after the onset of the memory retrieval task; second, we estimated phase synchrony between all possible pairs of EEG channels to evaluate large-scale synchronization. Fourteen healthy subjects performed the memory retrieval task in the virtual reality environment where they selected whether or not t he present item was seen in the previous training period. When the subjects viewed the unseen items, the middle gamma power (40-60Hz) appeared to increase 200-500ms after stimulus onset while the low gamma power (20Hz) was suppressed all the way through the post-stimulus period 150ms after onset. The degree of phase synchronization in this low gamma level, however, increased when the subjects fetched the item from memory. This suggests that phase synchrony analysis might reveal different aspects of the memory retrieval process than the gamma power, providing additional information to the inference on the brain dynamics during memory retrieval.

  • PDF

A Study on the Design of Microwave Oscillator Output Matching Circuit Using 3-dB Coupler Tuner (3-dB Coupler Tuner를 이용한 초고주파 발진기의 출력 정합회로 설계에 관한 연구)

  • 이석기;오재석;이영순;김병철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.171-178
    • /
    • 1998
  • Generally, the output matching circuit has the most influence to the output power of oscillator and existing method for output matching has difficulty for making the optimum output matching circuit because the matching has to be done nearby the infinite impedance area of the Smith Chart. In this paper, it is studied for the output matching circuit of the microwave oscillator to get the maximum output power. The maximum output point can be found by adjusting the position of moving short in the Tuner while the oscillator is operating after connect the 3-dB coupler Tuner to the oscillator without output matching circuit. To design the oscillator for the maximum output power can be done easily with the microstrip line which is realized from the measured S-parameters of Tuner. In compare the oscillator by the existing method with another one by the suggested method in this paper, the first one has 6.45 dBm output power and second one has 9.71 dBm which is 3.26 dBm higher than the first one at the oscillation frequency 1.0338 GHz.

  • PDF

DESIGN OF A LOAD FOLLOWING CONTROLLER FOR APR+ NUCLEAR PLANTS

  • Lee, Sim-Won;Kim, Jae-Hwan;Na, Man-Gyun;Kim, Dong-Su;Yu, Keuk-Jong;Kim, Han-Gon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.369-378
    • /
    • 2012
  • A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.

Design of Adaptive Neuro- Fuzzy Precompensator for Enhancement of Power System Stability (전력계통의 안정도 향상을 위한 적응 뉴로-퍼지 전 보상기 설계)

  • 정형환;정문규;이정필;이준탁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.4
    • /
    • pp.14-22
    • /
    • 2001
  • In this paper, we design the Adaptive Neuro-Fuzzy Precompensator(ANFP) for the suppression of low-frequency oscillation and the improvement of system stability. Here, ANFP is designed to compensate the conventional Power System Stabilizer(PSS). This design technique has the structural merit that is easily implemented by adding ANFP to an existing PSS. Firstly, the Fuzzy Precompensator with Loaming ability is constructed and is directly learned from the input and output data of the generating unit. Because the ANFP has the property of learning, fuzzy rules and membership functions of the compensator can be automatically tuned by teaming algorithm Loaming is based on the minimization of the ems evaluated by comparing the output of the ANFP and a desired controller. Case studies show the 7posed schema can be provided the good damping of the power system over the wide range of operating conditions and improved dynamic performance of the system.

  • PDF

TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

  • Yao, Wei;Fang, Jiakun;Zhao, Ping;Liu, Shilin;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.252-261
    • /
    • 2013
  • In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency oscillations under different operating conditions and is superior to the lead-lag damping controller tuned by EA.

Experimental research on the mechanisms of condensation induced water hammer in a natural circulation system

  • Sun, Jianchuang;Deng, Jian;Ran, Xu;Cao, Xiaxin;Fan, Guangming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3635-3642
    • /
    • 2021
  • Natural circulation systems (NCSs) are extensively applied in nuclear power plants because of their simplicity and inherent safety features. For some passive natural circulation systems in floating nuclear power plants (FNPPs), the ocean is commonly used as the heat sink. Condensation induced water hammer (CIWH) events may appear as the steam directly contacts the subcooled seawater, which seriously threatens the safe operation and integrity of the NCSs. Nevertheless, the research on the formation mechanisms of CIWH is insufficient, especially in NCSs. In this paper, the characteristics of flow rate and fluid temperature are emphatically analyzed. Then the formation types of CIWH are identified by visualization method. The experimental results reveal that due to the different size and formation periods of steam slugs, the flow rate presents continuous and irregular oscillation. The fluid in the horizontal hot pipe section near the water tank is always subcooled due to the reverse flow phenomenon. Moreover, the transition from stratified flow to slug flow can cause CIWH and enhance flow instability. Three types of formation mechanisms of CIWH, including the Kelvin-Helmholtz instability, the interaction of solitary wave and interface wave, and the pressure wave induced by CIWH, are obtained by identifying 67 CIWH events.