• 제목/요약/키워드: power minimization

검색결과 457건 처리시간 0.023초

안전도 향상을 위한 UPFC 운전 전략 (UPFC Operation Strategy for Enhancement of System Security)

  • 이동우;안선주;문승일;윤종수;장병훈;김수열;문승필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.177-178
    • /
    • 2006
  • The enhancement of system security is one of the most important objectives of UPFC operation. To describe the system security, the index related to line flows and bus voltages are used. For the enhancement of security, the operation point of UPFC is set to minimize the index. This paper proposes the minimization algorithm using the Marquardt method. Moreover, the coefficients minimizing iteration number will be derived. For verification of the proposed operation scheme, numerical simulations have been performed on power system in Kwanju area, Korea with a UPFC.

  • PDF

연계계통에서 안전도제약을 고려한 최적전력조류 (Optimal Power Flow considering Security in Interconnected Power Systems)

  • 김규호;이재규;이상봉;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.194-196
    • /
    • 2001
  • This paper presents a hybrid algorithm for solving security constrained OPF in interconnected power systems, which is based on the combined application of evolutionary programming (EP) and sequential quadratic programming (SQP). The objective functions are the minimization of generation fuel costs and system power losses. In OPF considering security, the outages are selected by contingency ranking method. The control variables are the active power of the generating units, the voltage magnitude of the generator, transformer tap settings and SVC setting. The state variables are the bus voltage magnitude, the reactive power of the generating unit, line flows and the tie line flow. The method proposed is applied to the modified IEEE 14buses model system.

  • PDF

A Study on Voltage Stability Improvement by the Efficient Network Reconfiguration Algorithm

  • Kim, Byung-Seop;Shin, Joong-Rin;Park, Jong-Bae;Shin, Yong-Hak
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권2호
    • /
    • pp.58-68
    • /
    • 2004
  • This paper presents an optimal routing algorithm (ORA) for maximizing voltage stability as well as for minimizing power loss in radial power systems. In the proposed ORA, a novel voltage stability index (VSI) for real-time assessment is newly introduced based on the conventional critical transmission path framework. In addition, the suggested algorithm can automatically detect the critical transmission paths resulting in voltage collapse when additional real or reactive loads are added. To implement an effective ORA, we have developed an improved branch exchange (IBE) method based on a loss calculation index and tie-branch power flow equations, which are suggested for real-time applications. The proposed algorithm has been tested with IEEE test systems as well as a large-scale power system in Korea to demonstrate its effectiveness and efficiency.

배전계통 부하 균등화를 위한 재구성에 관한 연구 (A Study of Reconfiguration for Load Balancing in Distribution Power System)

  • 서규석;백영식
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1360-1366
    • /
    • 2007
  • In this paper, the load balancing which is one of the distribution power system's operation purposes was studied. Reconfiguration of Distribution power system presents that the configuration is changed by changing the switch on/off status which exists in the system according to the mentioned purpose. Through this method, the load of distribution power system is shown to be balanced. As a characteristic of complicated distribution power system, system is designed by being applied by OOP(Object Oriented Programming) method which connected more flexibly than existing Procedural Programming method, and the process of calculating the distflow and the loss of configurated system is shown. In addition, this paper suggests more efficient method compared by the results of reconfiguration on the purpose of the loss minimization and by the result of distribution power system reconfiguration on the purpose of load balancing. Moreover, it searches for the method to approach the global optimal solution more quickly.

Minimization of Rising and Falling Times of A Boost Type Converter Output Voltage in Pulsed Mode Operation

  • Nho Eui-Cheol;Kim In-Dong;Joe Cheol-Je;Chun Tae-Won;Kim Heung-Geun
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.286-290
    • /
    • 2001
  • This paper describes an improved short-circuit protection method with a boost type rectifier using a multilevel ac/dc power converter. The output dc power of the proposed converter can be disconnected from the load within several hundred microseconds at the instant of short-circuit fault. Once the fault has been cleared the dc power is reapplied to the load. The rising time of the dc load voltage is as small as several hundred microseconds, and there is no overshoot of the dc voltage because the dc output capacitors hold undischarged state. The converter, which employs the proposed method, has the characteristics of a simplified structure, reduced cost, weight, and volume compared with a conventional power supply, which has frequent output short-circuits. Experimental results are presented to verify the usefulness of the proposed converter.

  • PDF

Output Power Control of Wind Generation System by Machine Loss Minimization

  • Abo-Khalil Ahmed;Lee Dong-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.51-54
    • /
    • 2005
  • Generator efficiency optimization is important for economic saving and environmental pollution reduction. In general, the machine loss can be reduced by the decreasing the flux level, resulting in the significant reduction of the core loss. This paper proposesan model-based controller is used to decrement the excitation current component on the basis of measured stator current and machine parameters and the q-axis current component controls the generator torque, by which the speed of the induction generator iscontrolled according to the variation of the wind speed in order to produce the maximum output power. The generator reference speed is adjusted according to the optimum tip-speed ratio. The generated power flows into the utility grid through the back-to-back PWM converter. The grid-side converter controls the dc link voltage and the line-side power factor by the q-axis and the d-axis current control, respectively. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

Analysis. Design and Control of Two-Level Voltage Source Converters for HVDC Systems

  • Mohan, D. Madhan;Singh, Bhim;Panigrahi, B.K.
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.248-258
    • /
    • 2008
  • The Voltage Source Converter (VSC) is replacing the conventional line commutated current source converters in High Voltage DC (HVDC) transmission systems. The control of a two-level voltage source converter and its design dealt with HVDC systems and various factors such as reactive power, power factor, and harmonics distortion are discussed in detail. Simulation results are given for the two-level converter and designed control is used for bidirectional power flow. The harmonics minimization is taken by extending the 6-pulse VSC to multipulse voltage source converters. The control is also tested and simulated for a 12-pulse voltage source converter to minimize the harmonic distortion in AC currents.

The Bandwidth from the Density Power Divergence

  • Pak, Ro Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제21권5호
    • /
    • pp.435-444
    • /
    • 2014
  • The most widely used optimal bandwidth is known to minimize the mean integrated squared error(MISE) of a kernel density estimator from a true density. In this article proposes, we propose a bandwidth which asymptotically minimizes the mean integrated density power divergence(MIDPD) between a true density and a corresponding kernel density estimator. An approximated form of the mean integrated density power divergence is derived and a bandwidth is obtained as a product of minimization based on the approximated form. The resulting bandwidth resembles the optimal bandwidth by Parzen (1962), but it reflects the nature of a model density more than the existing optimal bandwidths. We have one more choice of an optimal bandwidth with a firm theoretical background; in addition, an empirical study we show that the bandwidth from the mean integrated density power divergence can produce a density estimator fitting a sample better than the bandwidth from the mean integrated squared error.

전압, 무효전력의 계산기제어에 관한 연구 1 (A Study on Computer Control of Voltage-Rective Power Part 1-Development of Computer Control Seheme)

  • 송길영
    • 전기의세계
    • /
    • 제25권6호
    • /
    • pp.81-88
    • /
    • 1976
  • The present voltage-reactive power control aims at an overall coordination of reactive power sources and voltage regulation devices to keep the bus voltages within their allowable bounds on one hand and to reduce the transmission losses on the other. This paper presents an efficient computer control scheme for the real-time control of system voltage and reactive power on the basis of a simplified linear equation by using the system characteristic constant. Computational algorithm is used for the minimization of bus voltage deviation in the first phase of optimization and for the reduction of transmission losses under the constraint of vlotage settling condition in the second phase. The numerical example for sample practical system is also given. The present study on the computer control scheme will contribute to the automation of power system operation in the near future.

  • PDF

게임이론을 적용한 전력거래 해석 (Power Transaction Analysis using Game Theory)

  • 박만근;김발호;박종배;정만호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권6호
    • /
    • pp.266-271
    • /
    • 2000
  • The electric power industries are moving from the conventional monopolistic or vertically integrated environments to deregulated and competitive environments, where each participant is concerned with profit maximization rather than system-wide costs minimization. Consequently, the conventional least-cost approaches for the generation resource schedule can not exactly handle real-world situations. This paper presents a game theory application for analyzing power transactions and market design in a deregulated energy marketplace, where the market participants determine the net profits through the optimal bidding strategies. The demand elasticity of the energy price is considered for the realistic modeling of the deregulated marketplace.

  • PDF