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Abstract
The most widely used optimal bandwidth is known to minimize the mean integrated squared error(MISE) of

a kernel density estimator from a true density. In this article proposes, we propose a bandwidth which asymp-
totically minimizes the mean integrated density power divergence(MIDPD) between a true density and a corre-
sponding kernel density estimator. An approximated form of the mean integrated density power divergence is
derived and a bandwidth is obtained as a product of minimization based on the approximated form. The resulting
bandwidth resembles the optimal bandwidth by Parzen (1962), but it reflects the nature of a model density more
than the existing optimal bandwidths. We have one more choice of an optimal bandwidth with a firm theoretical
background; in addition, an empirical study we show that the bandwidth from the mean integrated density power
divergence can produce a density estimator fitting a sample better than the bandwidth from the mean integrated
squared error.

Keywords: Density estimator, density power divergence, Kullback-Leibler divergence, L2 distance,
mean integrated square error.

1. Introduction

Suppose that we have a set of random sample X1, . . . , Xn of size n from an unknown probability density
function f . Then a kernel density estimator f̂ is defined by

f̂n(x) =
1
nh

n∑
i=1

K
( x − Xi

h

)
,

where K( · ) is called a kernel function, and h is called a bandwidth, window width or smoothing
parameter (Rosenblatt, 1956; Parzen, 1962). The details about many practical aspects of f̂n(x) can be
found in Silverman (1985).

For estimating a density, it is crucial to select the appropriate value of a bandwidth h. To get
an appropriate value of a bandwidth, we usually consider a global measure of discrepancy between
the kernel density estimator and the density. The most commonly employed measure is the mean
integrated squared error(MISE)

MISE(h) = E
∫ {

f̂n(x) − f (x)
}2

dx,

which gives the optimal bandwidth

hMISE = k
− 2

5
2

{∫
K(t)2dt

} 1
5
{∫

f (2)(x)2dx
}− 1

5

n−
1
5 ,
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where k2 =
∫

t2K(t)dt.
As the alternative discrepancies, Devroye and Györfi (1985) employed the mean integrated er-

ror E
∫
| f̂ − f |, and Hall (1987) employed the expected Kullback-Leibler loss E

∫
f log ( f / f̂ ), and

Kanazawa (1993) employed the mean Hellinger distance E
∫
{ f̂ 1/2 − f 1/2}2, respectively.

In this article, in order to find an optimal bandwidth, we are trying to use the density power
divergence between density functions f and g such as

dα( f , g) =
∫ {

f (x)1+α − 1 + α
α

f (x)αg(x) +
1
α

g(x)1+α
}

dx, (α > 0), (1.1)

which was defined by Basu et al. (1998). When α = 0, the divergence is defined as, so called
Kullback-Leibler divergence,

d0( f , g) =
∫

g(x) log
{

g(x)
f (x)

}
dx.

The family of MDPD is indexed by a single parameter, α, which controls the trade-off between the
asymptotic efficiency and robustness Of the MDPD estimator (Basu et al. 1998). The following
sections show how we get an optimal bandwidth utilizing dα( · ) in (1.1) and discuss corresponding
properties.

Since Basu et al. (1998) have introduced the MDPD estimator, the robustness properties of these
estimators have been studied in detail for various areas from fundamental concepts to applications by
several authors. For example, Lee and Na (2005) considered the problem of testing for a parameter
change based on the cusum test. Durio and Isaia (2011) investigated the MDPD estimation as a
practical tool for a parametric regression model building. Most recently, Basu et al. (2013) considered
parametric hypothesis testing based on the density power divergence in a limited context. However,
there has been no study about finding a bandwidth of a density estimator based on the density power
divergence. We show how to get an optimal bandwidth by using the MDPD. The resulting bandwidth
is like the optimal bandwidth by Parzen (1962), but it reflects the nature of a model density.

The critical issue in the use of the MDPD estimation is the choice of tuning parameters. Basu et
al. (1998) made remarks on how to select an α, yet without methodological details. Warwick and
Jones (2005) chose an α by minimizing an asymptotic estimator of the mean square error. Fujisawa
and Eguchi (2006) proposed an adaptive methods to select an α based on an empirical approximations
of the Cramer-Von Mises divergence. The above approaches are theoretically sound but they are
make the MDPD estimation harder to use. Durio and Isaia (2011) investigated the use of the MDPD
criterion as a practical tool for parametric regression model building. Durio and Isaia (2011) proposed
a data-driven way to choose the α using a Monte Carlo Significance test on the similarity between a
robust and a classical estimators. In this article we run a simple empirical study to show how to find
an appropriate α using distributional adequacy statistics like a Kolmogorov-Smirnov(K-S) test.

2. Main Results

Let g(x) in (1.1) be

f̂n(x) =
1
nh

n∑
i=1

K
( x − Xi

h

)
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and let’s consider minimize

dα( f , f̂n) =
∫ {

f (x)1+α − 1 + α
α

f (x)α f̂n(x) +
1
α

f̂n(x)1+α
}

dx

w.r.t. h to get an optimal h. Since the first term is free of h, to minimize dα( f , f̂n) w.r.t. h is equivalent
to minimize

1
α

∫
f̂n(x)1+αdx − 1 + α

α

∫
f (x)α f̂n(x)dx (2.1)

w.r.t. h.
Similar to Silverman (1985), we take an expectation on (2.1) so as to measure the global accuracy

of f̂n to f as

1
α

E
∫

f̂n(x)1+αdx − 1 + α
α

E
∫

f (x)α f̂n(x)dx (2.2)

and call (2.2) as the mean integrated density power divergence(MIDPD).
Therefore, the globally optimal bandwidth, hMIDPD, is the solution to

E
∫

f̂n(x)α f̂ (1)
n (x)dx − E

∫
f (x)α f̂ (1)

n (x)dx = 0, (2.3)

where the number in an upper case parenthesis stands for the order of derivative w.r.t. h. We have
(2.3) by taking a derivative of (2.2) w.r.t. h and setting it to be equal to zero.

The left-hand side of (2.3) can be approximated by the first order Taylor series expansion as
follows;

E
∫ {

f̂n(x)α − f (x)α
}

f̂ (1)
n (x)dx ≈ E

∫
α
{
f̂n(x) − f (x)

}
f (x)α−1 f̂ (1)

n (x)dx.

Hence, we propose to solve the (approximated) mean integrated density power divergence equa-
tion,

E
∫ {

f̂n(x) − f (x)
}

f (x)α−1 f̂ (1)
n (x)dx = 0, (2.4)

to get the optimal bandwidth by the density power divergence and call it as hMIDPD(α).

Proposition 1. Under the same conditions of Silverman (1985), we have

hMIDPD(α) = k
− 2

5
2

{∫
K(t)2dt

∫
f (x)αdx

} 1
5
{∫

f (2)(x)2 f (x)α−1dx
}− 1

5

n−
1
5 ,

where α > 0 and k2 =
∫

t2K(t)dt. We can easily figure out that hMIDPD(1) = hMISE. The proof is in the
appendix.
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Figure 1: Relation of Approximated MIDPD, hMIDPD and α; a kernel is Gaussian, and a density is N(0, 1).
A dotted vertical line indicates a minimum.

3. Discussion

3.1. hMIDPS and α

In real situation we do not know what the true density or distribution would be, so that a very easy
and natural choice of a density is the normal density. Similar to Silverman (1985), we have

hMIDPD(α) =

 1
2
√
π

σ1−α(2π)
1
2−

α
2

α
1
2


1
5 {

σ−4−α(2 + α2)(2π)−
α
2

(1 + α)
5
2

}− 1
5

n−
1
5 =

{
(1 + α)5

2α(2 + α)2

} 1
10

σn−
1
5 ,

if a kernel is Gaussian and a true density is the N(µ.σ2). If α = 1, hMIDPD = (4/3)1/5σn−1/5, which is
as same as hMISE in Silverman (1985). hMIDPD(α) is then minimized around α = 0.35.

Figure 1(a) displays the approximated MIDPD for various α when a kernel is Gaussian and a
density is N(0, 1) and n is assumed to be 1 for illustration. We can observe that hMIDPS differs by α.
Each α produces its own optimal h which minimizes corresponding approximated MIDPD.

If we closely look at hMIDPD in Proposition 1,

k
− 2

5
2

{∫
K(t)2dt

∫
f (x)αdx

} 1
5
{∫

f (2)(x)2 f (x)α−1dx
}− 1

5

n−
1
5 ,
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Table 1: K-S test statistics for various α’s
α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Min 0.070 0.067 0.068 0.068 0.068 0.067 0.070 0.069 0.071 0.071
Med 0.103 0.100 0.099 0.099 0.099 0.100 0.100 0.101 0.102 0.102
Max 0.135 0.133 0.133 0.133 0.132 0.134 0.134 0.134 0.136 0.136

it is just a ratio of the (approximated, integrated) variance to the (approximated, integrated) bias. As
α approaches to 1, both the numerator and the denominator of hMIDPS get smaller (Figure 1(b)), but
the hMIDPS has 1.034 as a minimum when α � 0.35. At α = 1, the hMIDPS is 1.059, which turns out
to be same as hopt by Silverman (1985, p45). The number 1.034 is the smallest available bandwidth,
which properly weighting variance to bias. The α balances the trade-off between variance and bias,
and we may consider this as the effect of α.

3.2. An empirical example

There may be no universal way of selecting an appropriate α as Basu et al. (1998) pointed out. In this
article we propose a simple empirical way to find an appropriate α using a distributional adequacy
statistics like Kolmogorov-Smirnov(K-S) test. As an example, we take the Old Faithful Geyser data
containing waiting time between eruptions and the duration of the eruption for Old Faithful geyser in
Yellowstone National Park, Wyoming, USA. We randomly select 100 observations with replacement
from 272 eruption observations.

In this article, we borrow an idea of Durio and Isaia (2011) to select an α so as to test on the simi-
larity between a density estimator and an empirical density but we use the well-known Kolmogorov-
Smirnov test for similarity.

We get a density estimator for a random sample with hMIDPD(α), α = 0.1, 0.2, . . . , 1.0, and then
calculate K-S test statistics of a cumulative function of density estimator to an empirical distribution
of a sample. We do it for 1000 times. Table 1 shows the K-S test results. The critical value of K-S test
at 0.05% level of significance is 0.1360(= 1.36/

√
100). We can observed that α ∈ (0.3, 0.5), where

the medians of K-S test are smallest, provide the statistically best fit for the Old Faithful data. We
may choose any α ∈ (0.3, 0.5) for this particular example. In Section 3.1, we found that the proposed
hMIDPS is attained when α � 0.35 if a kernel is Gaussian and a true density is the N(µ.σ2).

3.3. A simulation and computational matters

We run simulations to figure out the effect of α. Random samples (n = 10, 30 and 100) are generated
from each density in Table 2. For each random sample, we calculate mean squared errors between a
density estimator with hMIDPD(α) and a true density. We do it 1000 times. Mean squared errors for
each density are listed in Table 3. Overall, the numbers when α = 1 are small. However, we can
find smaller numbers even when α is small like α ∈ {0.3, 0.4, 0.5} and specially n is large. We may
say that the hMIDPD with certain α produces better fit than the widely used hMISE. We can find larger
numbers where a density is #3, #4 and #5 which have a sharp peak at the center or at the far left of a
density. We guess that our computer program cannot cope with data from such densities quite well.
Integrations were carried out numerically using trapezoidal rule (Kincaid and Cheney, 1991).

The exact MIDPD, E[dα( f , f̂n)], and the approximated MIDPD (A.1) in the appendix are displayed
in Figure 2 for various densities which are listed in Table 2. The exact and approximated MIDPD
have similar parabolic shapes and the bandwidths that minimize both MIDPD are mostly very close.
Overall, the approximated MIDPD is expected to give a bandwidth close to a exact bandwidth. The
plots only for α = 1/3 are displayed due to space limitations.



440 Ro Jin Pak

Table 2: Densities and corresponding notations; adapted from Marron and Wand (1992)
Density Notation

#1 gaussian N(0, 1)

#2 skewed unimodal
1
5

N(0, 1) +
1
5

N

1
2
,

(
2
3

)2 + 3
5

N

13
12
,

(
5
6

)2
#3 strongly skewed

7∑
l=0

1
8

N

3

(

2
3

)l

− 1

 ,
(

2
3

)2l
#4 kurtotic unimodal

2
3

N(0, 1) +
1
3

N

0, ( 1
10

)2
#5 outlier

1
10

N(0, 1) +
9

10
N

0, ( 1
10

)2
#6 bimodal

1
2

N

−1,
(

2
3

)2 + 1
2

N

1, (3
2

)2
#7 separated bimodal

1
2

N

−3
2
,

(
1
2

)2 + 1
2

N

 3
2
,

(
1
2

)2
#8 skewed bimodal

3
4

N(0, 1) +
1
4

N

3
2
,

(
1
3

)2
#9 trimodal

9
20

N

− 6
5
,

(
3
5

)2 + 9
20

N

 6
5
,

(
3
5

)2 + 1
10

N

0, (1
4

)2
4. Conclusion

We employ the density power divergence to get an optimal bandwidth for kernel density estimators.
The proposed method provides a large class of optimal bandwidths covering well-known bandwidths.
We have discovered that hMIDPD with a proper α provides an good density estimator for data. As Basu
et al. (1998) showed that there may be no universal or general way of selecting an appropriate α.
We select an appropriate α empirically; consequently, the density estimators with selected α’s seem
to fit the data sets better than the existing optimal bandwidth based on MISE. We admit the need to
investigate the data-based estimation of the proposed bandwidth to make the results useful in practice.
The data-based estimation is another research problem to be considered in future research.

Appendix: Proof of Proposition 1

The principal part of the proof is to find an approximated form of the left hand side of (2.3).

E
∫

f̂n(x)α f̂ (1)
n (x)dx − E

∫
f (x)α f̂ (1)

n (x)dx = E
∫ {

f̂n(x)α − f (x)α
}

f̂ (1)
n (x)dx

≈ E
∫

α
{
f̂n(x) − f (x)

}
f (x)α−1 f̂ (1)

n (x)dx.

As it has been already known to us,

E f̂n(x) =
1
n

n∑
i=1

E
1
h

K
( x − Xi

h

)
=

∫
1
h

K
( x − y

h

)
f (y)dy

=

∫
K(t) f (x − ht)dt (y = x − ht).
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Table 3: Mean squared errors for various α under various models

Size Density α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

n=10

1 0.0045 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0045 0.0045 0.0045
2 0.0100 0.0104 0.0105 0.0105 0.0105 0.0104 0.0103 0.0102 0.0101 0.0100
3 0.0350 0.0352 0.0353 0.0353 0.0352 0.0352 0.0352 0.0351 0.0350 0.0350
4 0.0433 0.0437 0.0438 0.0438 0.0437 0.0437 0.0436 0.0435 0.0434 0.0433
5 0.3839 0.3935 0.3963 0.3964 0.3952 0.3934 0.3913 0.3891 0.3868 0.3846
6 0.0044 0.0046 0.0046 0.0046 0.0046 0.0045 0.0045 0.0045 0.0045 0.0044
7 0.0103 0.0103 0.0103 0.0102 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103
8 0.0103 0.0103 0.0103 0.0102 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103
9 0.0045 0.0047 0.0047 0.0047 0.0047 0.0047 0.0046 0.0046 0.0046 0.0045

n=30

1 0.0094 0.0098 0.0099 0.0099 0.0098 0.0098 0.0097 0.0096 0.0095 0.0094
2 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035
3 0.0269 0.0267 0.0267 0.0267 0.0267 0.0267 0.0268 0.0268 0.0268 0.0269
3 0.0322 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0322 0.0322 0.0322
4 0.1641 0.1590 0.1577 0.1576 0.1582 0.1591 0.1601 0.1613 0.1625 0.1637
5 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021
6 0.0076 0.0074 0.0073 0.0073 0.0074 0.0074 0.0074 0.0075 0.0076 0.0076
7 0.0076 0.0074 0.0073 0.0073 0.0074 0.0074 0.0074 0.0075 0.0076 0.0076
8 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023

n=100

1 0.0073 0.0075 0.0076 0.0076 0.0076 0.0075 0.0075 0.0074 0.0074 0.0073
2 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014
3 0.0218 0.0215 0.0215 0.0215 0.0215 0.0215 0.0216 0.0217 0.0217 0.0218
4 0.0251 0.0247 0.0246 0.0246 0.0246 0.0247 0.0248 0.0249 0.0249 0.0250
5 0.0845 0.0793 0.0780 0.0779 0.0785 0.0794 0.0805 0.0816 0.0828 0.0841
6 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
7 0.0050 0.0048 0.0047 0.0047 0.0047 0.0048 0.0048 0.0049 0.0049 0.0050
8 0.0050 0.0048 0.0047 0.0047 0.0047 0.0048 0.0048 0.0049 0.0049 0.0050
9 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0013 0.0013

From the Taylor’s expansion, we have

f (x − ht) = f (x) − ht f (1)(x) +
1
2

h2t2 f (2)(x) − 1
6

h3t3 f (3)(x) +
1
24

h4t4 f (4)(x) + O
(
h5

)
.

Then, the expected value of the kernel estimator is written as

E f̂n(x) = f (x)
[
1 +

1
2

h2 f (2)(x)
f (x)

∫
t2K(t)dt +

1
24

h4 f (4)(x)
f (x)

∫
t4K(t)dt + O

(
h5

)]
,

and

Var f̂n(x) =
f (x)
nh

∫
K(t)2dt + O

(
n−1

)
.

With a random variable ξ = Op(1) whose expectation is 0 and variance 1, we can write f̂n(x) as

f̂n(x)= f (x)

1+ 1
2

h2 f (2)(x)
f (x)

∫
t2K(t)dt+

1
24

h4 f (4)(x)
f (x)

∫
t4K(t)dt+O

(
h5

)
+


∫

K(t)2dt

nh f (x)


1
2

ξ+Op

(
n−

1
2

) ,
and by taking a derivative of f̂n(x) w.r.t. h we have

f̂ (1)
n (x)=

h f (2)(x)
∫

t2K(t)dt+
4
24

h3 f (4)(x)
∫

t4K(t)dt+O
(
h4

)
− 1

2


∫

K(t)2dt

nh3 f (x)


1
2

f (x)ξ+Op

(
n−

1
2

) .
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Figure 2: Exact MIDPD (solid lines, left axises) and approximated MIDPD (dotted lines, right axises) for h with
α = 1/3; n = 30.
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Therefore,∫
f̂n(x) f (x)α−1 f̂ (1)

n (x)dx =
∫

f (x)α
h f (2)(x)

∫
t2K(t)dt +

1
2

h3 f (2)(x)2

f (x)

{∫
t2K(t)dt

}2

+
4
24

h3 f (4)(x)
∫

t4K(t)dt + O
(
h4

)
+ Aξ − Bξ2 + Op

(
n−

1
2

)]
dx,

where A is complex but vanishes upon taking expectation for E[ξ] = 0 and we have B = (2nh2)−1
∫

K2

(t)dt.
Next, ∫

f (x)α f̂ (1)
n (x)dx =

∫
f (x)α

h f (2)(x)
∫

t2K(t)dt +
4
24

h3 f (4)(x)
∫

t4K(t)dt

+ Op

(
n−

1
2

)
+ O(h4) +

1
2


∫

K(t)2dt

nh3 f (x)


1
2

f (x)ξ

 dx,

where the last term vanishes upon taking expectation for E[ξ] = 0.
If we assume that h is small and n is large, we have

E
∫ {

f̂n(x)− f (x)
}
f (x)α−1 f̂ (1)

n (x)dx≈ 1
2

h3
{∫

t2K(t)dt
}2∫

f (2)(x)2 f (x)α−1dx− 1
2nh2

∫
K(t)2dt

∫
f (x)αdx.

Solving the above equation for h gives hMIDPD(α), which is

k
− 2

5
2

{∫
K(t)2dt

∫
f (x)αdx

} 1
5
{∫

f (2)(x)2 f (x)α−1dx
}− 1

5

n−
1
5 .

Appendix: An Alternative Proof of Proposition 1

The Equation (2.4) can be rewritten as

E
∫

α
{
f̂n(x) − f (x)

}
f (x)α−1 f̂ (1)

n (x)dx =
α

2
d
dh

∫
E

[{
f̂n(x) − f (x)

}2
]

f (x)α−1dx = 0.

The solution to the above equation gives hMIDPD(α). According to Silverman (1985) we have the
approximated equation

E
[{

f̂n(x) − f (x)
}2
]
≈ 1

4
h4k2

2 f (2)(x)2 +
1
nh

f (x)
∫

K(t)2dt,

and then we have∫
E

[{
f̂n(x) − f (x)

}2
]

f (x)α−1dx ≈ 1
4

h4k2
2

∫
f (2)(x)2 f (x)α−1dx +

1
nh

∫
f (x)αdx

∫
K(t)2dt. (A.1)

Take a derivative of (A.1) in the appendix w.r.t. h and set it equal to zero. The solution to that equation
for h turns out

k
− 2

5
2

{∫
K(t)2dt

∫
f (x)αdx

} 1
5
{∫

f (2)(x)2 f (x)α−1dx
}− 1

5

n−
1
5 ,

which is hMIDPD and is equal to the optimal h of Parzen (1962) when α = 1.
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