• Title/Summary/Keyword: power law

Search Result 1,990, Processing Time 0.028 seconds

Study on stability and free vibration behavior of porous FGM beams

  • Bennai, Riadh;Atmane, Redhwane Ait;Bernard, Fabrice;Nebab, Mokhtar;Mahmoudi, Noureddine;Atmane, Hassen Ait;Aldosari, Salem Mohammed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.67-82
    • /
    • 2022
  • In this paper, buckling and free vibration of imperfect, functionally graded beams, including porosities, are investigated, using a higher order shear strain theory. Due to defects during the manufacturing process, micro porosities may appear in the material, hence the appearance of this imperfection in the structure. The material properties of the beams are assumed to vary regularly, with power and sigmoid law, in the direction of thickness. A novel porosity distribution affecting the functionally graded volume fraction is presented. For the compact formulation used for cementite-based materials and already used in P-FGM, we have adapted it for the distribution of S-FGM. The equations of motion in the FG beam are derived using Hamilton's principle. The boundary conditions for beam FG are assumed to be simply supported. Navier's solution is used to obtain the closed form solutions of the FG beam. The numerical results of this work are compared with those of other published research to verify accuracy and reliability. The comparisons of different shear shape functions, the influence of porosity, thickness and inhomogeneity parameters on buckling and free vibration of the FG beam are all discussed. It is established that the present work is more precise than certain theories developed previously.

Influence of flexoelectricity on bending of piezoelectric perforated FG composite nanobeam rested on elastic foundation

  • Ali Alnujaie;Alaa A. Abdelrahman;Abdulrahman M. Alanasari;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.361-380
    • /
    • 2023
  • A size dependent bending behavior of piezoelectrical flexoelectric layered perforated functionally graded (FG) composite nanobeam rested on an elastic foundation is investigated analytically. The composite beam is composed of regularly cutout FG core and two piezoelectric face sheets. The material characteristics is graded through the core thickness by power law function. Regular squared cutout perforation pattern is considered and closed forms of the equivalent stiffness parameters are derived. The modified nonlocal strain gradient elasticity theory is employed to incorporate the microstructure as well as nonlocality effects into governing equations. The Winkler as well as the Pasternak elastic foundation models are employed to simulate the substrate medium. The Hamiltonian approach is adopted to derive the governing equilibrium equation including piezoelectric and flexoelectric effects. Analytical solution methodology is developed to derive closed forms for the size dependent electromechanical as well as mechanical bending profiles. The model is verified by comparing the obtained results with the available corresponding results in the literature. To demonstrate the applicability of the developed procedure, parametric studies are performed to explore influences of gradation index, elastic medium parameters, flexoelectric and piezoelectric parameters, geometrical and peroration parameters, and material parameters on the size dependent bending behavior of piezoelectrically layered PFG nanobeams. Results obtained revealed the significant effects both the flexoelectric and piezoelectric parameters on the bending behavior of the piezoelectric composite nanobeams. These parameters could be controlled to improve the size dependent electromechanical as well as mechanical behaviors. The obtained results and the developed procedure are helpful for design and manufacturing of MEMS and NEMS.

The effect of ambidextrous strategic balance on the management performance of venture businesses (양손잡이 전략균형이 벤처기업 경영성과에 미치는 영향)

  • Se-jong Yoo;Yong-seok Cho;Woo-hyoung Kim
    • Korea Trade Review
    • /
    • v.48 no.1
    • /
    • pp.83-126
    • /
    • 2023
  • The revenue histogram of venture businesses is shifting from bell-shaped normal distribution to power-law distribution, which implies that the fitness landscape of the venture businesses ecosystem is changing to be more rugged terrain. We argue that the firm should adopt both exploitation (fast follower) and exploration (or first mover) strategies not to get stuck in local maxima in the rugged fitness landscape from the complex system perspective. By designing and performing agent-based modeling simulation experiments which consist of three types of agents (new technologies, entrepreneurs, and consumers), we demonstrated that the ambidexterity strategy showed the highest performance score in three of four different environment except 'Fast Widening' case where the exploitation strategy showed the highest performance score under low technology appropriation and fast disruptive technology development speed. By investigating the financial and other statistics of 617 top venture businesses who have earned 100B won or higher annual revenue, we concluded that 82% and 9% of firms are bent on the exploitation and exploration strategy.

Development of unmanned hovercraft system for environmental monitoring (환경 모니터링을 위한 무인 호버크래프트 시스템 개발)

  • Sung-goo Yoo;Jin-Taek Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.525-530
    • /
    • 2024
  • The need for an environmental monitoring system that obtains and provides environmental information in real time is increasing. In particular, in the case of water quality management in public waters, regular management must be conducted through manual and automatic measurement by law, and air pollution also requires regular measurement and management to reduce fine dust and exhaust gas in connection with the realization of carbon neutrality. In this study, we implemented a system that can measure and monitor water pollution and air pollution information in real time. A hovercraft capable of moving on land and water simultaneously was used as a measurement tool. Water quality measurement and air pollution measurement sensors were installed on the hovercraft body, and a communication module was installed to transmit the information to the monitoring system in real time. The structure of a hovercraft for environmental measurement was designed, and a LoRa module capable of low-power, long-distance communication was applied as a real-time information transmission communication module. The operational performance of the proposed system was confirmed through actual hardware implementation.

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai;Mouloud Dahmane
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.83-96
    • /
    • 2024
  • This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

Numerical simulation and experimental study of non-stationary downburst outflow based on wall jet model

  • Yongli Zhong;Yichen Liu;Hua Zhang;Zhitao Yan;Xinpeng Liu;Jun Luo;Kaihong Bai;Feng Li
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.129-146
    • /
    • 2024
  • Aiming at the problem of non-stationary wind field simulation of downbursts, a non-stationary down-burst generation system was designed by adding a nozzle and program control valve to the inlet of the original wall jet model. The computational fluid dynamics (CFD) method was used to simulate the downburst. Firstly, the two-dimensional (2D) model was used to study the outflow situation, and the database of working conditions was formed. Then the combined superposition of working conditions was carried out to simulate the full-scale measured downburst. The three-dimensional (3D) large eddy simulation (LES) was used for further verification based on this superposition condition. Finally, the wind tunnel test is used to further verify. The results show that after the valve is opened, the wind ve-locity at low altitude increases rapidly, then stays stable, and the wind velocity at each point fluctuates. The velocity of the 2D model matches the wind velocity trend of the measured downburst well. The 3D model matches the measured downburst flow in terms of wind velocity and pulsation characteris-tics. The time-varying mean wind velocity of the wind tunnel test is in better agreement with the meas-ured time-varying mean wind velocity of the downburst. The power spectrum of fluctuating wind ve-locity at different vertical heights for the test condition also agrees well with the von Karman spectrum, and conforms to the "-5/3" law. The vertical profile of the maximum time-varying average wind veloci-ty obtained from the test shows the basic characteristics of the typical wind profile of the downburst. The effectiveness of the downburst generation system is verified.

Free vibration characteristics of three-phases functionally graded sandwich plates using novel nth-order shear deformation theory

  • Pham Van Vinh;Le Quang Huy;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.27-39
    • /
    • 2024
  • In this study, the authors investigate the free vibration behavior of three-phases functionally graded sandwich plates using a novel nth-order shear deformation theory. These plates are composed of a homogeneous core and two face-sheet layers made of different functionally graded materials. This is the novel type of the sandwich structures that can be applied in many fields of mechanical engineering and industrial. The proposed theory only requires four unknown displacement functions, and the transverse displacement does not need to be separated into bending and shear parts, simplifying the theory. One noteworthy feature of the proposed theory is its ability to capture the parabolic distribution of transverse shear strains and stresses throughout the plate's thickness while ensuring zero values on the two free surfaces. By eliminating the need for shear correction factors, the theory further enhances computational efficiency. Equations of motion are established using Hamilton's principle and solved via Navier's solution. The accuracy and efficiency of the proposed theory are verified by comparing results with available solutions. The authors then use the proposed theory to investigate the free vibration characteristics of three-phases functionally graded sandwich plates, considering the effects of parameters such as aspect ratio, side-to-thickness ratio, skin-core-skin thicknesses, and power-law indexes. Through careful analysis of the free vibration behavior of three-phases functionally graded sandwich plates, the work highlighted the significant roles played by individual material ingredients in influencing their frequencies.

On the thermal buckling response of FG Beams using a logarithmic HSDT and Ritz method

  • Kadda Bouhadjeb;Abdelhakim Kaci;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohammed A. Al-Osta;S.R. Mahmoud;Farouk Yahia Addou
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.453-465
    • /
    • 2024
  • This paper presents a logarithmic shear deformation theory to study the thermal buckling response of power-law FG one-dimensional structures in thermal conditions with different boundary conditions. It is assumed that the functionally graded material and thermal properties are supposed to vary smoothly according to a contentious function across the vertical direction of the beams. A P-FG type function is employed to describe the volume fraction of material and thermal properties of the graded (1D) beam. The Ritz model is employed to solve the thermal buckling problems in immovable boundary conditions. The outcomes of the stability analysis of FG beams with temperature-dependent and independent properties are presented. The effects of the thermal loading are considered with three forms of rising: nonlinear, linear and uniform. Numerical results are obtained employing the present logarithmic theory and are verified by comparisons with the other models to check the accuracy of the developed theory. A parametric study was conducted to investigate the effects of various parameters on the critical thermal stability of P-FG beams. These parameters included support type, temperature fields, material distributions, side-to-thickness ratios, and temperature dependency.

Investigating wave propagation in sigmoid-FGM imperfect plates with accurate Quasi-3D HSDTs

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.185-202
    • /
    • 2024
  • In this research paper, and for the first time, wave propagations in sigmoidal imperfect functionally graded material plates are investigated using a simplified quasi-three-dimensionally higher shear deformation theory (Quasi-3D HSDTs). By employing an indeterminate integral for the transverse displacement in the shear components, the number of unknowns and governing equations in the current theory is reduced, thereby simplifying its application. Consequently, the present theories exhibit five fewer unknown variables compared to other Quasi-3D theories documented in the literature, eliminating the need for any correction coefficients as seen in the first shear deformation theory. The material properties of the functionally graded plates smoothly vary across the cross-section according to a sigmoid power law. The plates are considered imperfect, indicating a pore distribution throughout their thickness. The distribution of porosities is categorized into two types: even or uneven, with linear (L)-Type, exponential (E)-Type, logarithmic (Log)-Type, and Sinus (S)-Type distributions. The current quasi-3D shear deformation theories are applied to formulate governing equations for determining wave frequencies, and phase velocities are derived using Hamilton's principle. Dispersion relations are assumed as an analytical solution, and they are applied to obtain wave frequencies and phase velocities. A comprehensive parametric study is conducted to elucidate the influences of wavenumber, volume fraction, thickness ratio, and types of porosity distributions on wave propagation and phase velocities of the S-FGM plate. The findings of this investigation hold potential utility for studying and designing techniques for ultrasonic inspection and structural health monitoring.

Sampling Plan for Bemisia tabaci Adults by Using Yellow-color Sticky Traps in Tomato Greenhouses (시설토마토에서 황색트랩을 이용한 담배가루이 표본조사법)

  • Song, Jeong Heub;Lee, Kwang Ju;Yang, Young Taek;Lee, Shin Chan
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.375-380
    • /
    • 2014
  • The sweetpotato whitefly (SPW), Bemisia tabaci Gennadius, is a major pest in tomato greenhouses on Jeju Island because they transmit viral diseases. To develop practical sampling methods for adult SPWs, yellow-color sticky traps were used in commercial tomato greenhouses throughout the western part of Jeju Island in 2011 and 2012. On the basis of the size and growing conditions in the tomato greenhouses, 20 to 30 traps were installed in each greenhouse for developing a sampling plan. Adult SPWs were more attracted to horizontal traps placed 60 cm above the ground than to vertical trap placed 10 cm above the plant canopy. The spatial patterns of the adult SPWs were evaluated using Taylor's power law (TPL) and Iwao's patchiness regression (IPR). The results showed that adult SPWs were aggregated in each surveyed greenhouse. In this study, TPL showed better performance because of the coefficient of determination ($r^2$). On the basis of the fixed-precision level sampling plan using TPL parameters, more traps were required for higher precision in lower SPW densities per trap. A sequential sampling stop line was constructed using TPL parameters. If the treatment threshold was greater than 10 maximum adult SPWs on a trap, the required traps numbered 15 at a fixed-precision level of 0.25. In estimating the mean density per trap, the proportion of traps with two or more adult SPWs was more efficient than whole counting: ${\ln}(m)=1.19+0.90{\ln}(-{\ln}(1-p_T))$. The results of this study could be used to prevent the dissemination of SPW as a viral disease vector by using accurate control decision in SPW management programs.