• 제목/요약/키워드: power harvesting

검색결과 549건 처리시간 0.026초

압전 나노발전기: 에너지 수확 기술 (Piezoelectric Nanogenerators: Energy Harvesting Technology)

  • 신동명;황윤회
    • 진공이야기
    • /
    • 제3권2호
    • /
    • pp.17-20
    • /
    • 2016
  • Piezoelectric nanogenerators are energy harvesting device to convert a mechanical energy into an electric energy using nanostructured piezoelectric materials. This review summarizes works to date on piezoelectric nanogenerators, starting with a basic theory of piezoelectricity and working mechanism, and moving through the reports of numerous nanogenerators using nanorod arrays, flexible substrates and alternative materials. A sufficient power generated from nanogenerators suggests feasible applications for either power supplies or strain sensors of highly integratedl nano devices. Further development of nanogenerators holds promise for the development of self-powered implantable and wearable electronics.

농촌의 주곡 건조.저장.가공 작업체계 개선확립 (Improvement of System for Grain Drying, Storing , and Processing in Rural Area)

  • 서상용;이승규;김용환
    • Journal of Biosystems Engineering
    • /
    • 제3권1호
    • /
    • pp.33-46
    • /
    • 1978
  • To get the goal of self-supply of food grain, improvement of post-harvest grain operations in rural area is under consideration as an important task of agriculture in Korea. This is study is focused on elimination of losses and deteriorations of grain and reduction of labour requirements and funds for post-harvest grain operations. The purpose of this study are presentation of basic data referring to conventional post-harvest grain operations in rural area and suggestion of improving methods for the operations, and also finding out reasonable operating processes of the operations. The result of this study are follows; 1. Grain drying in-the-filed which is performed before threshing has major factors of grain loss during drying, and so should be restrained as possible. Combine harvesting system is recommended among other king of mechanized harvesting systems for restraining in-the-field drying and securing available labors for drying. 2. It is predicted that mechanical grain drying could be prevalent when combine harvesting is taken place. Recommended grain drier for pre-combine harvesting system and for combine harvesting system is batch-type drier and circulating -type drier, respectively. 3. As existing farm storages for grain have insufficient spaces and offer poor conditions for grain storing , it is greatly needed to build up new storage which store only grains. And it is concluded that storing grain in community common storages in desirable. 4. Power supplying system for milling machinery in local milling plants, that a large capacity prime mover supplies power to 4 to 6 kinds of milling machinery simultaeously, should be converted to a system of several small capacity prime movers supplying power to each machiner y for the purpose of reducing extra consumption of energy. 5. Governmental grain, of which Korean farms produced, should be milled and stored in the local milling plant successively for the purpose of reducing transportation fee and stroing facilities. 6. Furture post-havest grain operations-drying, storing and milling should be periormed successively in he community common plant. And average optimum processing capacity of the plant is estimated about 300 metric ton of grain every year.

  • PDF

에너지 하베스팅을 적용한 중계기의 성능 분석 (Performance Analysis of Relay applied to Energy Harvesting)

  • 김태욱;공형윤
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.67-72
    • /
    • 2014
  • 본 논문에서는 협력 통신에 에너지 하베스팅 기법을 적용할 경우 발생되는 잡음을 최소화하고 성능을 개선시킬 수 있는 방안을 제안하였다. 제안된 기법은 에너지 하베스팅 노드에서 수집된 전력을 저장하고 저장된 전력을 바탕으로 중계기를 사용한다. 이때, 중계기에서는 복호 후 전송(Decode and Forward) 기법을 적용하여 잡음의 영향을 최소화하였고, 수신단에서는 최대비 결합(Maximal Ratio Combining) 기법을 적용하여 다이버시티 이득을 얻었다. 따라서 제안된 기법을 일반적인 네트워크 환경에 적용할 경우 중소형 중계기의 구동에 필요한 전력을 제거할 수 있으며, 전력의 수집으로 인해 단말기 및 네트워크의 효율성을 증가시킬 수 있다. 마지막으로, 제안한 프로토콜을 레일리 페이딩 환경에서 전력 수집 효율 및 비트오류율(Bit Error Rate), 아웃티지 확률(Outage Probability)을 통해 시스템의 성능을 평가한다.

IoT 및 웨어러블 시스템을 위한 멀티 소스 기반 에너지 수확 구조 (Multi-Source Based Energy Harvesting Architecture for IoT and Wearable System)

  • 박현문;권진산;김병수;김동순
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.225-234
    • /
    • 2019
  • 마찰 나노 발전을 활용한 TENG(: Triboelectric nanogenerators)는 작은 진동에서 높은 변환 효율과 지속적인 전력을 얻을 수 있는 장점이 있다. 하지만, 마찰 전기 에너지 수집을 위해서는 비선형 에너지 추출 기술이 요구되며, 연결 인터페이스 회로를 통한 동기화 기반의 능동적인 스위치회로가 요구된다. 본 연구는 사람으로의 움직임으로부터 발생한 비선형(non-linear) 에너지를 효율적으로 저장하는 기법을 제시하였다. 또한, 개발된 보드는 서로 다른 방향으로 움직이는 동작으로부터 발생하는 에너지를 효율적으로 수확하고 저장할 수 있다. 본 연구에서 개발된 실리콘기반 압전기반의 TENG 셀과 다중모듈이 연결 가능한 에너지 하베스팅 보드의 측정하였다. 결과적으로, 다중입력 에너지 수집환경에서 안정적인 에너지의 저장 유지를 통해 약 49.2mW/count를 발전하였다.

광대역 압전 에너지 하베스팅 기술 (Broadband Piezoelectric Energy Harvesting Technology)

  • 이동규;이연정;송현철
    • 세라미스트
    • /
    • 제22권1호
    • /
    • pp.56-69
    • /
    • 2019
  • Recent advances in low-power sensors and transmitters are driving the search for standalone power sources that utilize unused ambient energy. These energy harvesters can alleviate the issues related to the installation and maintenance of sensors. Particularly piezoelectric energy harvesters, with the ability to convert ambient mechanical energy into useful electricity, have received significant attention due to their high energy density, low cost and operational stability over wide temperature and pressure conditions. In order to maximize the generated electrical power, the natural frequency of the piezoelectric energy harvester should be matched with the dominant frequency of ambient vibrations. However, piezoelectric energy harvesters typically exhibit a narrow bandwidth, thus, it becomes difficult to operate near resonance under broadband ambient vibration conditions. Therefore, the resonating of energy harvesters is critical to generate maximum output power under ambient vibration conditions. For this, energy harvesters should have broadband natural frequency or actively tunable natural frequency with ambient vibrations. Here, we review the most plausible broadband energy harvesting techniques of the multi-resonance, nonlinearity, and self-resonance tuning. The operation mechanisms and recent representative studies of each technique are introduced and the advantages and disadvantages of each method are discussed. In addition, we look into the future research direction for the broadband energy harvester.

Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping

  • Aliaghayee, Mehdi;Fard, Hassan Ghafoori;Zandi, Ashkan
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권3호
    • /
    • pp.218-227
    • /
    • 2016
  • The light harvesting efficiency is counted as an important factor in the power conversion efficiency of DSSCs. There are two measures to improve this parameter, including enhancing the dye-loading capacity and increasing the light trapping in the photoanode structure. In this paper, these tasks are addressed by introducing a macro-porous silicon (PSi) substrate as photoanode. The effects of the novel photoanode structure on the DSSC performance have been investigated by using energy dispersive X-ray spectroscopy, photocurrent-voltage, UV-visible spectroscopy, reflectance spectroscopy, and electrochemical impedance spectroscopy measurements. The results indicated that bigger porosity percentage of the PSi structure improved the both anti-reflective/light-trapping and dye-loading capacity properties. PSi based DSSCs own higher power conversion efficiency due to its remarkable higher photocurrent, open circuit voltage, and fill factor. Percent porosity of 64%, PSi(III), resulted in nearly 50 percent increment in power conversion efficiency compared with conventional DSSC. This paper showed that PSi can be a good candidate for the improvement of light harvesting efficiency in DSSCs. Furthermore, this study can be considered a valuable reference for more investigations in the design of multifunctional devices which will profit from integrated on-chip solar power.

Stretchable Carbon Nanotube Composite Clays with Electrical Enhancers for Thermoelectric Energy Harvesting E-Skin Patches

  • Tae Uk Nam;Ngoc Thanh Phuong Vo;Jun Su Kim;Min Woo Jeong;Kyu Ho Jung;Alifone Firadaus Nurwicaksono Adi;Jin Young Oh
    • Elastomers and Composites
    • /
    • 제58권1호
    • /
    • pp.11-16
    • /
    • 2023
  • Electronic skin (e-skin), devices that are mounted on or attached to human skin, have advanced in recent times. Yet, the development of a power supply for e-skin remains a challenge. A stretchable thermoelectric generator is a promising power supply for the e-skin patches. It is a safe and semi-permanent energy harvesting device that uses body heat for generating power. Carbon nanotube (CNT) clays are used in energy-harvesting e-skin patches. In this study, we report improved thermoelectric performance of CNT clays by using chemical doping and physical blending of thermoelectric enhancers. The n-type and p-type thermoelectric enhancers increase electrical conductivity, leading to increased power factors of the thermoelectric CNT clays. The blend of CNT clays and enhancers is intrinsically stretchable up to 50% while maintaining its thermoelectric property.

Broadband energy harvester for varied tram vibration frequency using 2-DOF mass-spring-damper system

  • Hamza Umar;Christopher Mullen;Soobum Lee;Jaeyun Lee;Jaehoon Kim
    • Smart Structures and Systems
    • /
    • 제32권6호
    • /
    • pp.383-391
    • /
    • 2023
  • Energy harvesting in trams may become a prevalent source of passive energy generation due to the high density of vibrational energy, and this may help power structural health monitoring systems for the trams. This paper presents a broadband vibrational energy harvesting device design that utilizes a varied frequency from a tram vehicle using a 2 DOF vibrational system combined with electromagnetic energy conversion. This paper will demonstrate stepwise optimization processes to determine mechanical parameters for frequency tuning to adjust to the trams' operational conditions, and electromagnetic parameters for the whole system design to maximize power output. The initial optimization will determine 5 important design parameters in a 2 DOF vibrational system, namely the masses (m1, m2 (and spring constants (k1, k2, k3). The second step will use these parameters as initial guesses for the second optimization which will maintain the ratios of these parameters and present electrical parameters to maximize the power output from this system. The obtained values indicated a successful demonstration of design optimization as the average power generated increased from 1.475 mW to 17.44 mW (around 12 times).

Resonant Pulse Power Converter with a Self-Switching Technique

  • Kim, Hyeok-Jin;Chung, Gyo-Bum;Cho, Jae-Ho
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.784-791
    • /
    • 2010
  • In this paper, a resonant pulse power converter (RPPC) is proposed. The proposed RPPC transfers the pulse-shape power from a DC source to a load periodically. The RPPC consists of a resonant circuit and a resonant pulse converter driven by a self-switching circuit. Depending on the magnitude difference between the input and output voltages, the operations of the RPPC are divided into 4 modes; boost mode, hybrid mode, direct mode and cut-off mode, respectively. The main switch of the RPPC turns on in the ZCS condition and off in the ZVS condition spontaneously. The operational principles of a RPPC using the self-switching technique are analyzed and verified in experiments. An example of a RPPC application is demonstrated in the area of thermoelectric energy harvesting.

보리의 기계수확체계(機械收穫體系) 시험(試驗) (A Study on Mechanized System of Barley Harvesting)

  • 김정수;이동현;백풍기;정두호
    • Journal of Biosystems Engineering
    • /
    • 제7권2호
    • /
    • pp.36-44
    • /
    • 1983
  • Farm population was rapidly decreasing due to shift of the people from farm sector to the non-farm sector caused by the economic growth of the country. Especially, a great shortage of farm labor in busy farming period in June and October is becoming a serious problem in maintaining or promoting land productivity. The peak of labor requirement in summer is caused by rice transplanting and barley harvesting. In order to reduce the restrictions imposed on farm management by the concurrence of labor requirement and the lack of labor, the experimental study for mechanization of barley harvesting has been carried out in the fields. 1. The machines for barley harvesting were knap-sack type reapers, windrow reaper (power tiller attachment), binder and combine. The order of higher efficiency of machine for barley harvesting was combine, binder, windrow reaper (WR), knapsack type reaper 1(KSTR1), and knap sack type reaper 2(KSTR2; mist and duster attachment). 2. The ratio of grain loss for the manual, binder, and combine plot was about four percent of total field yield. 3. The total yield of barley in 35 days and 40 days harvesting after heading were 514 kg and 507kg per 10 ares respectively. The yield of 35 days-plot was higher than other experimental plots. 4. The lowest yield was recorded in 30 days-plot due to the large quantity of immatured grains and having lighter 1000-grain weight. The ratio of immatured grains was 2.66 percent and 1000-grain weight was 29.4 grams. 5. The total harvesting cost of the windrow reaper was 10,178 won per 10 ares. It was the lowest value compared to other machines. The next were combine, binder, KSTR1, KSTR2, and manual in sequence. As a result, the optimum time of barley harvesting for mechanization was 35-40 days after heading. Combine, binder, and windrow reaper were recommended as the suitable machines for barley harvesting in the work efficiency. However, in total harvesting cost, the windrow reaper was the most promising machine for barley harvesting.

  • PDF