• 제목/요약/키워드: power generation control systems

검색결과 490건 처리시간 0.027초

A Novel Anti-Islanding Method for Utility Interconnection of Distributed Power Generation Systems

  • In-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권4호
    • /
    • pp.217-224
    • /
    • 2004
  • A novel anti-islanding method for the distributed power generation system (DPGS) is proposed in this paper. Three different islanding scenarios are explored and presented based on the analysis of real and reactive power mismatch. It is shown via investigation that islanding voltage is a function of real power alone, where its frequency is a function of both real and reactive power. Following this analysis, a robust anti-islanding algorithm is developed. The proposed algorithm continuously perturbs ($\pm$5%) the reactive power supplied by the DPGS while simultaneously monitoring the utility voltage and frequency. In the event of islanding, a measurable frequency deviation takes place, upon which the real power of the DPGS is further reduced to 80%. A drop in voltage positively confirms islanding and the DPGS is then safely disconnected. This method of control is shown to be robust: it is able to detect islanding under resonant loads and is also fast acting (operable in one cycle). Possible islanding conditions are simulated and verified through analysis. Experimental results on a 0.5kW fuel cell system connected to a utility grid are discussed.

분산 전원 시스템의 전력품질 향상을 위한 계통연계 인버터의 이중 전류제어 기법 (Dual Current Control Scheme of a Grid-connected Inverter for Power Quality Improvement in Distributed Generation Systems)

  • 김경화
    • 조명전기설비학회논문지
    • /
    • 제29권9호
    • /
    • pp.33-41
    • /
    • 2015
  • To improve the power quality of distributed generation (DG) systems even in the presence of distorted grid condition, dual current control scheme of a grid-connected inverter is proposed. The proposed current control scheme is achieved by decomposing the inverter state equations into the fundamental and harmonic components. The derived models are employed to design dual current controllers. The conventional PI decoupling current controller is used in the fundamental model to control the main power flow in DG systems. At the same time, the predictive control is applied in the harmonic model to suppress undesired harmonic currents to zero quickly. To decompose the voltage inputs and state variables into the fundamental and harmonic components, the fourth order band pass filter (BPF) is designed in the discrete-time domain for a digital implementation. For experimental verification, 2kVA prototype of a grid-connected inverter has been constructed using digital signal processor (DSP) TMS320F28335. The effectiveness of the proposed strategy is demonstrated through comparative simulation and experimental results.

On the Control of Re-Structured Electric Power Systems

  • Feliachi Ali
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.363-375
    • /
    • 2005
  • The paper describes some of the challenges that face the control of nonlinear interconnected power systems. The challenges include the selection of appropriate control and information structures that could range from a completely decentralized to a fully centralized structure. Once a structure is proven to be feasible, the effectiveness of control signals needs to be assessed. Analytical tools are derived for this purpose in the first part of the paper, and they are illustrated with a case study that involves the design of a damping decentralized controller using a Thyristor Controlled Series Compensation device. The second part of the paper deals with the load following and tracking problem through automatic generation control for a system that has been re-structured or deregulated. This problem can be solved using a completely decentralized scheme. It is solved here using fuzzy rules and with an emphasis on compliance with NERC's standards and reduction of wear and tear of the equipment. It is illustrated with a test system that has three interconnected control areas. Finally, comments on the economics of control and the author's vision are presented.

Compensation for Photovoltaic Generation Fluctuation by Use of Pump System with Consideration for Water Demand

  • Imanaka, Masaki;Sasamoto, Hideki;Baba, Jumpei;Higa, Naoto;Shimabuku, Masanori;Kamizato, Ryota
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1304-1310
    • /
    • 2015
  • In remote islands, due to expense of existing generation systems, installation of photovoltaic cells (PVs) and wind turbines has a chance of reducing generation costs. However, in island power systems, even short-term power fluctuations change the frequency of grids because of their small inertia constant. In order to compensate power fluctuations, the authors proposed the power consumption control of pumps which send water to tanks. The power control doesn’t affect water users’ convenience as long as tanks hold water. Based on experimental characteristics of a pump system, this paper shows methods to determine reference power consumption of the system with compensation for short-term PV fluctuations while satisfying water demand. One method uses a PI controller and the other method calculates reference power consumption from water flow reference. Simulations with a PV and a pump system are carried out to find optimum parameters and to compare the methods. Results show that both PI control method and water flow calculation method are useful for satisfying the water demand constraint. The water demand constraint has a little impact to suppression of the short-term power fluctuation in this condition.

Dynamic Model for Ocean Thermal Energy Conversion Plant with Working Fluid of Binary Mixtures

  • Nakamura, Masatoshi;Zhang, Yong;Bai, Ou;Ikegami, Yasuyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2304-2308
    • /
    • 2003
  • Ocean thermal energy conversion (OTEC) is an effective method of power generation, which has a small impact on the environment and can be utilized semi-permanently. This paper describes a dynamic model for a pilot OTEC plant built by the Institute of Ocean Energy, Saga University, Japan. This plant is based on Uehara cycle, in which binary mixtures of ammonia and water is used as the working fluid. Some simulation results attained by this model and the analysis of the results are presented. The developed computer simulation can be used to actual practice effectively, such as stable control in a steady operation, optimal determination of the plant specifications for a higher thermal efficiency and evaluation of the economic prospects and off-line training for the operators of OTEC plant.

  • PDF

풍력 열발생 유압 시스템을 위한 새로운 유량제어밸브에 관한 연구 (A Study on a Novel Flow Control Valve for Wind Power Heat Generation Hydraulic Systems)

  • 최세령;이일영;한봉준
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권1호
    • /
    • pp.23-28
    • /
    • 2017
  • A wind power heat generation system that converts wind power directly to heat instead of electric power is considered in this study. The system consists of a wind turbine part and a heat generation part. The heat generation part is materialized by a hydraulic system including a hydraulic pump, a flow control valve, a hydraulic oil tank, etc. The flow control valve primarily converts hydraulic energy generated in the pump to heat energy. It should have a function of overspeed protection under excessive wind speeds. In this study, a novel flow control valve design is proposed for excellent flow control characteristics under excessive pump driving torque (excessive wind speed). The performance of the suggested valve is analyzed using numerical simulation.

파력-해상풍력 복합발전시스템의 IEC61850기반 통합 SCADA시스템 개발 (Development of Unified SCADA System Based on IEC61850 in Wave-Offshore Wind Hybrid Power Generation System)

  • 이재규;이상엽;김태형;함경선
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.811-818
    • /
    • 2016
  • This paper suggests a structure of power control system in floating wave-offshore wind hybrid power generation system. We have developed an unified SCADA(Supervisory Control and Data Acquisition) system which can be used to monitor and control PCS(Power Conversion System) based on IEC61850. The SCADA system is essential to perform the algorithm like proportional distribution and data acquisition, monitoring, active power, reactive power control in hybrid power generation system. IEC61850 is an international standard for electrical substation automation systems. It was made to compensate the limitations of the legacy industrial protocols such as Modbus. In order to test the proposed SCADA system and algorithm, we have developed the wind-wave simulator based Modbus. We have designed a protocol conversion device based on real-time Linux for the communication between Modbus and IEC61850. In this study, SCADA system consists of four 3MW class wind turbines and twenty-four 100kW class wave force generator.

차세대 원자력 발전소에서의 공학적안전설비작동계통 Prototype 기능의 구현 (Prototype Development for KNGR Engineered Safety Features-Component Control Systems)

  • 박종범;박현신;장익호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.813-815
    • /
    • 1998
  • Engineered Safety Features-Component Control Systems(ESF-CCS) are those I&C systems that control safety equipment used to maintain the integrity of reactor coolant pressure boundary. This paper illustrates distinctive features and improved design concepts of Korea Next Generation Reactor(KNGR) based on the experience obtained through prototyping of ESF-CCS.

  • PDF

태양광 발전과 에너지저장시스템을 활용한 모빌리티 충전 시스템의 제어 방법 (Control Strategies of Mobility Charging Systems Using PV-ESS Systems)

  • 김대원;이현민;박성민
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.334-341
    • /
    • 2021
  • Operation modes and control strategies for single-phase mobility charging station utilizing photovoltaic (PV) generation and energy storage systems (ESS) are proposed. This approach generates electric power from PV to transmit the mobility, ESS, and then transfer it to the grid when surplus electric power is generated during daytime. However, the PV power cannot be generated during night-time, and ESS and the mobility system can be charged using grid power. The power balance control based on power fluctuations and the resonant current control that can compensate harmonic components have been added to increase the stability of the system. The MATLAB/Simulink simulation was carried out to verify the proposed control method, and the 2-kW single-phase grid-tied PV-ESS smart mobility charger was built and tested.

선형계획법을 이용한 총송전용량 평가 (Assessment of Total Transfer Capability using Linear Programming)

  • 김규호;송경빈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.262-263
    • /
    • 2006
  • This paper presents a scheme to solve the congestion problem with phase-shifting transformer(PST) and power generation using linear programming method. A good design of PST and power generation control can improve total transfer capability(TTC) in interconnected systems. This paper deals with an application of optimization technique for TTC calculation. linear programming method is used to maximize power flow of tie line subject to security constraints such as voltage magnitude and real power flow. The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

  • PDF