• Title/Summary/Keyword: power flow matrix

Search Result 112, Processing Time 0.04 seconds

A Matrix method for the Simplification of Linear Passive Networks (행렬법에 의한 선형수동회로의 간략화법)

  • Young Moon Park
    • 전기의세계
    • /
    • v.25 no.4
    • /
    • pp.63-67
    • /
    • 1976
  • A new method for simplifying linear, bilateral and passive networks is presented, and the principle employed is based upon the elimination of mutual impedance and floating nodes of the metwork by introducing incidence matrix notations and bus admittance matrices. The method suggested is, particularly, suited for machine computations and applycable for reducing the calculation time in power system short-circuit and load-flow studies with good results.

  • PDF

Development of Vibration Analysis Software, PFADS-R3 using Power Flow Analysis (파워흐름해석법을 이용한 진동해석 소프트웨어, PFADS-R3 개발)

  • 홍석윤;서성훈;박영호;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.824-830
    • /
    • 2003
  • The Power Flow Finite Element Method(PFFEM) offers very promising results in predicting the vibration responses of system structures, and the first PFFEM software, PFADS has been developed in Seoul National University for the vibration predictions and analysis of coupled system structures in medium-to-high frequency ranges. PFFEM is numerical method which solves energy governing equation using finite element technique for complicated structures where the exact solutions are not available. Through the upgrades, the current version PFADS R3 could cover the general beam and plate structures including various kinds of beam-plate rigid joints, spring-damper connection and rigid body connection within beam and plate in addition. This software is composed of three parts; translator, model converter and solver. The translator makes its own FE-model from bulk data of commercial FE software, and the model converter is used to convert FE-model to PFFE-model automatically. The solver calculates vibrational energy density and intensity for PFFE-model by solving global matrix equations of PFFEM. For the applications of PFADS R3, two vehicle models and a container model are examined with respect to major parameters, and reliable results are obtained.

  • PDF

Analysis of Power Characteristics for a Hydromechanical Transmission Considering HSU Flow Loss (HSU의 유량손실을 고려한 정유압 기계식 변속기의 동력특성 해석)

  • Sung, Duk-Hwan;Lee, Geun-Ho;Kim, Hyoung-Eui;Kim, Hyun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1149-1158
    • /
    • 2002
  • An improved hydrostatic unit(HSU) model is proposed by considering the flow loss in order to analyze the power flow characteristics of a hydromechanical transmission(HMT) and a network analysis algorithm is presented to determine the torque and speed of each element of the HMT. To calculate the torque and flow loss of a pump and a motor in HSU, an effort and flow concept is introduced, which can be used to establish a torque and speed matrix in the network analysis. It is found from the network analysis that magnitude of the HSU stroke increases to maintain the same output speed in order to compensate the flow Boss in the HSU and the efficiency of the HMT shows the lowest value in the 1st speed since the HSU has the largest flow loss in the 1st speed and the flow loss decreases as the speed ratio upshifts.

OPTIMAL REACTIVE POWER AND VOLTAGE CONTROL USING A NEW MATRIX DECOMPOSITION METHOD (새로운 행렬 분할법을 이용한 최적 무효전력/전압 제어)

  • Park, Young-Moon;Kim, Doo-Hyun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.202-206
    • /
    • 1989
  • A new algorithm is suggested to solve the optimal reactive power control(optimal VAR control) problem. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. The model minimizes the real power losses in the system. The constraints include the reactive power limits of the generators, limits on the bus voltages and the operating limits of control variables- the transformer tap positions, generator terminal voltages and switchable reactive power sources. The method developed herein employs linearized sensitivity relationships of power systems to establish both the objective function for minimizing the system losses and the system performance sensitivities relating dependent and control variables. The algorithm consists of two modules, i.e. the Q-V module for reactive power-voltage control, Load flow module for computational error adjustments. In particular, the acceleration factor technique is introduced to enhance the convergence property in Q-module, The combined use of the afore-mentioned two modules ensures more effective and efficient solutions for optimal reactive power dispatch problems. Results of the application of the method to the sample system and other worst-case system demonstrated that the algorithm suggested herein is compared favourably with conventional ones in terms of computation accuracy and convergence characteristics.

  • PDF

Power Flow Calculation Method of DC Distribution Network for Actual Power System

  • Kim, Juyong;Cho, Jintae;Kim, Hongjoo;Cho, Youngpyo;Lee, Hansang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.419-425
    • /
    • 2020
  • DC distribution system has been evaluated as an excellent one in comparison with existing AC distribution network because it needs fewer power conversion stages and the full capacity of the equipment can be used without consideration for power factor. Recently, research and development on the implementation of DC distribution networks have been progressed globally based on the rapid advancement in power-electronics technology, and the technological developments from the viewpoint of infrastructure are also in progress. However, to configure a distribution network which is a distribution line for DC, more accurate and rapid introduction of analysis technology is needed for the monitoring, control and operation of the system, which ensure the system run flexible and efficiently. However, in case of a bipolar DC distribution network, there are two buses acting as slack buses, so the Jacobian matrix cannot be configured. Without solving this problem, DC distribution network cannot be operated when the network is unbalanced. Therefore, this paper presented a comprehensive method of analysis with consideration of operating elements which are directly connected between neutral electric potential caused by the unbalanced of load in DC distribution network with bipolar structure.

A Study on the Calculation Scheme of Extreme Loading Point and Nose Curves using Modified N-R and Continuation Method (수정N-R법과 연속음형법을 이용한 임계부하점 및 Nose Curve 산정기법 연구)

  • Yu, In-Keun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.712-722
    • /
    • 1992
  • Several voltage instability/collapse problems that have occurred in the electric utility industry worldwide have gained the attention of engineers and researchers of electric power systems. This paper proposes an effective calculation scheme of the extreme loading point and nose curves(P-V curves) using modified Newton-Raphson(N-R) load flow method and the Continuation Method. This method provides detail and visual information of the power system voltage profile and operating margin ro operators and planners. In this paper, a modified load flow claculation method for ill-conditioned power systems is introduced for the purpose of seeking more precise load flow solutions and nose curves, and the Continuation Method is also used as a part of the solution algorithm for the calculation of extreme loading point and nose curves. The conventional polar coordinate based N-R load flow program is modified to avoid numerical difficulties caused by the singularity of the Jacobian matrix occuring in the vicinity of extreme loading point of heavily loaded systems. Application results of the proposed method to Klos-Kerner 11-bus system and modified IEE-30-bus system are presented to assure the usefulness of the approach.

  • PDF

Vibration Power Flow Analysis of Ship Structures Using SEA Parameter(Coupling Loss Factor) (SEA 파라미터(연성손실계수)를 이용한 선박의 진동 파워흐름해석)

  • Park, Young-Ho;Hong, Suk-Yoon;Park, Do-Hyun;Seo, Seong-Hoon;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.291-300
    • /
    • 2000
  • This paper proposes the new hybrid analysis of vibration in the medium to high frequency ranges including PFA and SEA concept. The core part of this method is the applications of coupling loss factor(CLF) instead of power transmission, reflection coefficients in boundary condition. This method shows very promising compared to the classical PFA for the various damping loss factors and wide ranges of frequencies. Besides this paper presents the applicable method in Power Flow Finite Element Method by forming the joint element matrix with CLF. These hybrid concepts are expected to improve SEA and PFA methods in vibration analysis.

  • PDF

REDUCTION OF PRESSURE RIPPLES USING A PARALLEL LINE IN HYDRAULIC PIPELINE

  • KIM K. H.;JANG J. S.;JUNG D. S.;KIM H. E.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 2005
  • Pressure ripples, which are inevitably generated by a fluctuation of flow rate caused by a pump mechanism, include noises and vibrations in hydraulic pipeline. These noises and vibration deteriorate the stability and accuracy of hydraulic systems. The accumulator and hydraulic attenuator are normally used to reduce the pressure ripples. In this study, a parallel line is introduced to the hydraulic pipeline for the hydraulic system with a bent-axis piston pump as a method to reduce the pressure ripples. The dynamic characteristics of the hydraulic pipeline with a parallel line are analyzed by a transfer matrix in the frequency domain. The usefulness of the hydraulic pipeline with a parallel line was ascertained by experiment and simulation. The results from the experiment and simulation show that the hydraulic pipeline with a parallel line were effective in reducing the pressure ripples.

Some Properties on Jacobian Matrix (전력조류방정식과 자코비안 행렬의 성질에 대하여)

  • Lee, Sang-Joong;Yang, Seong-Deog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.251-253
    • /
    • 2004
  • Though the reference angle has been specified conventionally on the slack bus, it can be specified on my bus in the system without changing power flow solutions. This paper describes that the loss sensitivity of the salk bus can be obtained through an angle reference transposition. A concept of two reference buses, consisting of "power slack bus"

  • PDF

Optimal Power Flow with Linear Programming (선형계획법을 이용한 최적조류계산)

  • Jung, G.H.;Baek, Y.S.;Song, K.B.;Chu, J.B.;Won, J.R.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.145-148
    • /
    • 2000
  • This paper presents new algorithm which is based on LP(Linear Programming) that guarantee convergence. It is considered to minimize generation cost and load shedding as object function subject to various constraints. The proposed algorithm use sensitivity matrix to re-dispatch generation power, so the total CPU time is saved.

  • PDF