• Title/Summary/Keyword: power distribution

Search Result 6,671, Processing Time 0.03 seconds

Network Performance Verification for Next-Generation Power Distribution Management System Using FRTU Simulator (FRTU 시뮬레이터를 이용한 차세대 배전지능화시스템 네트워크 성능검증)

  • Yeo, Sang-Uk;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.523-529
    • /
    • 2020
  • Power distribution management system is essential for the efficient management and operation of power distribution networks. The power distribution system is a system that manages the distribution network based on IT, and has been evolving along with the development of the power industry. The current power distribution system is designed to operate at a relatively low network transmission speed based on the independent operation of the main equipment. However, due to distributed resources such as photovoltaic or energy storage devices, which are rapidly increasing in popularity in recent years, the operation of future distribution environments is becoming more complex, and various information needs to be collected in real time. In this study, the requirements of the next-generation power distribution system were derived to overcome the limitations of the existing power distribution system, and based on this, the communication network system and performance requirements for the distribution system were defined. In order to verify the performance of the designed system, a software-based terminal device simulator was developed because it takes excessive time and cost to introduce a large-scale system such as a power distribution system. Using the simulator, a test environment similar to the actual operation was established, and the number of terminal devices was increased up to 1,000. The proposed system was shown to satisfy the requirements to support the functions of the next-generation power distribution system, recording less than 10 % of the communication network bandwidth.

The Effect of Business Relationships on Conflict and Satisfaction in the Cosmetics Industry's Distribution Channel (코스메틱 산업에서의 유통경로상 거래관계가 갈등과 관계만족에 미치는 영향)

  • Park, Soo-Hong;Yang, Hoe-Chang;Sun, Il-Suck
    • Journal of Distribution Science
    • /
    • v.13 no.6
    • /
    • pp.79-86
    • /
    • 2015
  • Purpose - The cosmetics industry is a traditional high value-added industry in terms of the domestic demand, small batch production systems, exclusive competition, and raw materials highly dependent on overseas countries as well as an oligopolistic market structure. However, new foreign brands and growing consumer awareness of inexpensive products, has triggered a shift. In line with changing lifestyles and the polarization of consumption, the industry faces a new market structure. Among its key characteristics is the cosmetics industry's numerous distribution channels (i.e., department stores, door-to-door sales, online shopping malls, brand shops, and discount stores). Therefore, the study of its distribution channels is essential. Research design, data, and methodology - The study analyzed channel distribution power divided into coercive and non-coercive power. The factors of coercive power included: unilateral request of an increase in commissions, interference in sales by taking advantage of a superior status, unilateral buck-passing at the time of a problem, unilateral request to stop sales activities, and a unilateral business contract; the factors of non-coercive power included favorable payment conditions, offers of various kinds of information, policy on commission reduction, pride in market entrance, and promotion support. In addition, the mediating variable "interdependence" was applied to the execution of department store (or mart) power and their shop conflicts and satisfaction to examine direct and indirect influential power. The methodology was a survey of managers of cosmetics shops in department stores (or marts). The questionnaire, based on a five-point Likert scale, included questions about basic personal information, execution of power, interdependence, conflict, and satisfaction. The study distributed 198 questionnaires and collected 131. Ten questionnaires with missing or hard to analyze data were excluded. Thus, 121 copies were analyzed. Results - According to the analysis, the execution of coercive power by department stores (or marts) did not affect interdependence, but the execution of non-coercive power did. Interdependence did not influence conflict, but did affect satisfaction. Additionally, the analysis revealed direct influential power: the execution of coercive power positively affected conflict and negatively influenced satisfaction; the execution of non-coercive power positively affected satisfaction. Conclusions - To offer suggestions for distribution business relations in the cosmetics industry, this study investigated how the execution of power by department stores (or marts) affected their shops. More specifically, it examined how much the execution of both coercive power and non-coercive power influenced conflict and satisfaction, and analyzed the mediating role of interdependence. In line with previous study results in various areas, coercive power was shown to be the source of conflict, leading to a decrease in satisfaction, whereas non-coercive power significantly positively influenced satisfaction. Moreover, non-coercive power increased interdependence, which led to greater satisfaction. As a result, interdependence had a mediating effect on non-coercive power and satisfaction. Based on the results, department stores (or marts) should look for improvements plans that increase interdependence. Such plans could alleviate conflict with the shops, increasing their satisfaction.

Integrating physics-based fragility for hierarchical spectral clustering for resilience assessment of power distribution systems under extreme winds

  • Jintao Zhang;Wei Zhang;William Hughes;Amvrossios C. Bagtzoglou
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Widespread damages from extreme winds have attracted lots of attentions of the resilience assessment of power distribution systems. With many related environmental parameters as well as numerous power infrastructure components, such as poles and wires, the increased challenge of power asset management before, during and after extreme events have to be addressed to prevent possible cascading failures in the power distribution system. Many extreme winds from weather events, such as hurricanes, generate widespread damages in multiple areas such as the economy, social security, and infrastructure management. The livelihoods of residents in the impaired areas are devastated largely due to the paucity of vital utilities, such as electricity. To address the challenge of power grid asset management, power system clustering is needed to partition a complex power system into several stable clusters to prevent the cascading failure from happening. Traditionally, system clustering uses the Binary Decision Diagram (BDD) to derive the clustering result, which is time-consuming and inefficient. Meanwhile, the previous studies considering the weather hazards did not include any detailed weather-related meteorologic parameters which is not appropriate as the heterogeneity of the parameters could largely affect the system performance. Therefore, a fragility-based network hierarchical spectral clustering method is proposed. In the present paper, the fragility curve and surfaces for a power distribution subsystem are obtained first. The fragility of the subsystem under typical failure mechanisms is calculated as a function of wind speed and pole characteristic dimension (diameter or span length). Secondly, the proposed fragility-based hierarchical spectral clustering method (F-HSC) integrates the physics-based fragility analysis into Hierarchical Spectral Clustering (HSC) technique from graph theory to achieve the clustering result for the power distribution system under extreme weather events. From the results of vulnerability analysis, it could be seen that the system performance after clustering is better than before clustering. With the F-HSC method, the impact of the extreme weather events could be considered with topology to cluster different power distribution systems to prevent the system from experiencing power blackouts.

Power Flow Study of Low-Voltage DC Micro-Grid and Control of Energy Storage System in the Grid

  • Kim, Dong-Eok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.549-558
    • /
    • 2017
  • DC distribution has several differences compared to AC distribution. DC distribution has a higher efficiency than AC distribution when distributing electricity at the same voltage level. Accordingly, power can be transferred further with low-voltage DC. In addition, power flow in a DC grid system is produced by only a voltage difference in magnitude. Owing to these differences, operation of a DC grid system significantly differs from that of an AC system. In this paper, the power flow problem in a bipolar-type DC grid with unbalanced load conditions is organized and solved. Control strategy of energy storage system on a slow time scale with power references obtained by solving an optimization problem regarding the DC grid is then proposed. The proposed strategy is verified with computer simulations.

The Comparison of Reliability for Change Single Loop Configuration in Radial Power Distribution System (수지상 배전계통을 단일루프로 구조 변경시 신뢰도 비교)

  • Lee, Hee-Tae;Kim, Jae-Chul;Kim, Ju-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1472-1478
    • /
    • 2009
  • The domestic power distribution system is operating in an open loop mode; however, it already has a loop structure. Power distribution systems must be changed for bi-directions power supply for smart networks due to a changing of paradigm in electric power industry. The simplest bi-directions distribution networks can make it closing of normally open switch. However, bi-directions power supply is very difficulty to be operated and there are many parts which it must study. This paper presented various models that are able to change a radial system for loop structures. Further, we compared the reliability index for each model by evaluating the amount of improvement reliability required in radial power distribution system. In addition, we calculated CIC(Customer Interruption Cost) for each model by comparing and analyzing.

Reliability in Two Independent Uniform and Power Function-Half Normal Distribution

  • Woo, Jung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.325-332
    • /
    • 2008
  • We consider estimation of reliability P(Y < X) and distribution of the ratio when X and Y are independent uniform random variable and power function random variable, respectively and also consider the estimation problem when X and Y are independent uniform random variable and a half-normal random variable, respectively.

A Distribution Automation System Simulator for Training and Research

  • Gupta R. P.;Srivastava S. C.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.159-170
    • /
    • 2005
  • This paper presents the design and development of a scaled down physical model for power Distribution Automation (DA) system simulation. The developed DA system simulator is useful in providing hands-on experience to utility engineers / managers to familiarize with the DA system and gain confidence in managing the power distribution system from the computer aided distribution control center. The distribution automation system simulator can be effectively used to carry out further research work in this area. This also helps the undergraduate and graduate students to understands the power distribution automation technology in the laboratory environment. The developed DA simulator has become an integral part of a distribution automation lab in the Electrical Engineering Department at Indian Institute of Technology Kanpur in India.

A plan to harmonize the equipments of power distribution with its environment (배전설비의 환경조화방안)

  • Lee, Jae-Gwan;Kim, Sang-Yul
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1206-1209
    • /
    • 1998
  • For 21th Century, the assignment of power distribution will be the expansion of equipments to supply electric power and harmony with its environment, in process of approving value consciousness of land, space, and the preservation of surroundings. This paper proposes a plan to match with the requirement about equipments, having ability to supply electric power, being harmonized itself with its surroundings by applying a general concept of "Amenity" when we choose an established form of power distribution.

  • PDF

A study on the development of distribution simulator and simulation results for use in distribution automation system of IEC 61850 protocol (IEC 61850 프로토콜의 배전자동화시스템에 사용을 위한 배전시뮬레이터 개발과 시뮬레이션 결과에 관한 연구)

  • Kim, Jae-Hong;Oh, Jae-Gon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • It is a study for the evaluation of the stability of the distribution automation system for the expansion of renewable energy. Through the Renewable Energy 3020 Implementation Plan, the government plans to expand new renewable energy and convert it to participatory energy that improves the quality of life of the people by 2030. The government has set a target of 20% of domestic supply energy for renewable energy generation by 2030. It is planning to establish more than 95 percent of its new facilities with clean energy such as solar power and wind power. By expanding the supply of renewable energy, new energy businesses and distributed power industry were fostered, and short-distance, low-voltage, and small-scale power generation were rapidly expanded rather than large-scale power development in the past. Due to this demand, the importance of power distribution facility operation has emerged and the need for distribution automation system is increasing. This paper discusses the development of a power distribution simulator for the performance and function evaluation of power distribution automation systems and presents the results of an interlocking test with the power distribution automation system. In order to introduce an advanced system into the power distribution system, it is necessary to take advantage of the transmission and distribution system. The DNP3.0 protocol is used in the distribution system and the IEC61850 protocol is used in the transmission and distribution system. It was concluded that the functions and performance of operations were satisfied when these two protocols are mixed and used in the distribution automation system.

Bus-voltage Sag Suppressing and Fault Current Limiting Characteristics of the SFCL Due to its Application Location in a Power Distribution System

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1305-1309
    • /
    • 2013
  • The application of the superconducting fault current limiter (SFCL) in a power distribution system is expected to contribute the voltage-sag suppression of the bus line as well as the fault-current reduction of the fault line. However, the application effects of the SFCL on the voltage sag of the bus line including the fault current are dependent on its application location in a power distribution system. In this paper, we investigated the fault current limiting and the voltage sag suppressing characteristics of the SFCL due to its application location such as the outgoing point of the feeder, the bus line, the neutral line and the 2nd side of the main transformer in a power distribution system, and analyzed the trace variations of the bus-voltage and fault-feeder current. The simulated power distribution system, which was composed of the universal power source, two transformers with the parallel connection and the impedance load banks connected with the 2nd side of the transformer through the power transmission lines, was constructed and the short-circuit tests for the constructed system were carried out. Through the analysis on the short-circuit tests for the simulated power distribution system with the SFCLs applied into its representative locations, the effects from the SFCL's application on the power distribution system were discussed from the viewpoints of both the suppression of the bus-voltage sag and the reduction of the fault current.