• Title/Summary/Keyword: power curve

Search Result 1,263, Processing Time 0.029 seconds

A probabilistic knowledge model for analyzing heart rate variability (심박수변이도 분석을 위한 확률적 지식기반 모형)

  • Son, Chang-Sik;Kang, Won-Seok;Choi, Rock-Hyun;Park, Hyoung-Seob;Han, Seongwook;Kim, Yoon-Nyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.3
    • /
    • pp.61-69
    • /
    • 2015
  • This study presents a probabilistic knowledge discovery method to interpret heart rate variability (HRV) based on time and frequency domain indexes, extracted using discrete wavelet transform. The knowledge induction algorithm was composed of two phases: rule generation and rule estimation. Firstly, a rule generation converts numerical attributes to intervals using ROC curve analysis and constructs a reduced ruleset by comparing consistency degree between attribute-value pairs with different decision values. Then, we estimated three measures such as rule support, confidence, and coverage to a probabilistic interpretation for each rule. To show the effectiveness of proposed model, we evaluated the statistical discriminant power of five rules (3 for atrial fibrillation, 1 for normal sinus rhythm, and 1 for both atrial fibrillation and normal sinus rhythm) generated using a data (n=58) collected from 1 channel wireless holter electrocardiogram (ECG), i.e., HeartCall$^{(R)}$, U-Heart Inc. The experimental result showed the performance of approximately 0.93 (93%) in terms of accuracy, sensitivity, specificity, and AUC measures, respectively.

Microstructure Prediction of Superalloy Nimonic 80A for Hot Closed Die Forging (열간 형단조 Nimonic 80A의 미세조직 변화 예측)

  • Jeong H. S.;Cho J. R.;Park H. C.;Lee S. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.384-391
    • /
    • 2005
  • The nickel-based alloy Nimonic 80A possesses the excellent strength, and the resistance against corrosion, creep and oxidation at high temperature. Its products are used in aerospace engineering, marine engineering and power generation, etc. Control of forging parameters such as strain, strain rate, temperature and holding time is important because change of the microstructure in hot working affects the mechanical properties. Change of the microstructure evolves by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range of $0.05\~5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range $0.05,\;5s^{-1}$, holding time range of 5, 10, 100, 600 sec using hot compression tests. Modeling equations are proposed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters in modeling equations are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of the initial grain size and holding time. The modeling equations developed were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The grain size predicted from FE simulation results is compared with results obtained in field product.

A Study on the Helical Gear Forming by Cold Extrusion (냉간 압출에 의한 헬리컬 기어의 제조에 관한 연구)

  • 최재찬;조해용;권혁홍;한진철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.127-138
    • /
    • 1991
  • A gear forming method by cold extrusion and an analytical method with its numerical solution program based on the upper bound method were developed. In the analysis the involute curve was as a shape of die and the upper bound method was used to calculate energy dissipation rate. By this method the power requirement and optimum conditions necessary for extruding helical(spur) gear were successfully calculated. These numerical solutions are in good agreement with experimental data. In the experiment, 4-6 class helical gear of KS standard for automobile transmission was successfully manufactured.

Surface wave Tomography of the Korean Peninsula by Noise Cross-correlation Method (잡음 상호상관 기법을 이용한 한반도의 표면파 토모그래피에 대한 연구)

  • Cho, Kwang-Hyun;Kang, Ik-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.133-136
    • /
    • 2007
  • Cross correlation of seismic-background motions (Campillo and Paul, 2003; Shapiro et al., 2005) is applied to observations from the Korean Meteorological Administration seismic network to estimate the short-period Rayleigh and Love wave dispersion characteristics of the region. Standard processing procedures are applied to the cross correlation, except that signal whitening is used in place of one-bit sampling to equalize power in signals from different times. Multiple-filter analysis is used to extract the group velocities from the estimated Green's functions, which are then used to image the spatially varying dispersion at periods between 0.5 and 20 sec. The tomographic inversion technique used inverts all periods simultaneously to provide a smooth dispersion curve as a function of period in addition to the usual smooth spatial image for a given period. The Gyeongsang Basin in the southeastern part of the peninsula is clearly resolved with lower group velocities.

  • PDF

Counter-Rotating Type Pumping Unit (Impeller Speeds in Smart Control)

  • Kanemoto, Toshiaki;Komaki, Keiichi;Katayama, Masaaki;Fujimura, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.334-340
    • /
    • 2011
  • Turbo-pumps have weak points, such as the pumping operation is unstable on the positive slope of the head curve and/or the cavitation occurs at the low suction head. To improve simultaneously both weak points, the first author invented the unique pumping unit composed of the tandem impellers and the peculiar motor with the double rotational armatures. The front and the rear impellers are driven by the inner and the outer armatures of the motor, respectively. Both impeller speeds are automatically and smartly adjusted in response to the pumping discharge, while the rotational torques between both impellers/armatures are counter-balanced. Such speeds contribute to suppress successfully not only the unstable operation at the low discharge but also the cavitation at the high discharge, as verified with the axial flow type pumping unit in the previous paper. Continuously, this paper investigates experimentally the effects of the tandem impeller profiles on the pump performances and the rotational speeds against the discharge, using the impellers whose loads are low and/or high at the normal discharge. The worthy remarks are that (a) the unstable operation is suppressed as expected and the shut off power is scarcely large in the smart control, (b) the blade profile contributes to determine the discharge giving the maximum/minimum rotational speed where the reverse flow may incipiently appears at the front impeller inlet, (c) the tandem impeller profiles scarcely affect the rotational speeds, while the loads of the front and the rear impellers are same, but (d) the impeller with the low load must run faster and the impeller with the high load must run slower at the same discharge to take the same rotational torque, and (e) the reverse flow at the inlet and the swirling velocity component at the outlet of the front impeller with the high load require making the rotational speed of the rear impeller with low load fairly faster at the lower discharge.

Evaluation of Energy Production for a Small Wind Turbine by Considering the Geometric Shape of the Deokjeok-Do Island (덕적도 지형을 고려한 소형풍력발전기 발전량 평가)

  • Jang, Choon-Man;Lee, Sang-Moon;Jeon, Wan-Ho;Lim, Tae-Gyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.629-635
    • /
    • 2014
  • This paper presents annual energy production (AEP) by a 1.5kW wind turbine due to be installed in Deokjeok-Do island. Local wind data is determined by geometric shape of Deokjeok-Do island and annual wind data from Korea Institute of Energy Research at three places considered to be installed the wind turbine. Numerical simulation using WindSim is performed to obtain flow pattern for the whole island. The length of each computation grid is 40 m, and k-e turbulence model is imposed. AEP is determined by the power curve of the wind turbine and the local wind data obtained from numerical simulation. To capture the more detailed flow pattern at the specific local region, Urumsil-maul inside the island, fine mesh having the grid length of 10m is evaluated. It is noted that the input data for numerical simulation to the local region is used the wind data obtained by the numerical results for the whole island. From the numerical analysis, it is found that a local AEP at the Urumsil-maul has almost same value of 1.72 MWh regardless the grid resolutions used in the present calculation. It is noted that relatively fine mesh used for local region is effective to understand the flow pattern clearly.

Effect of Thermal Aging on Material Strength and Fracture Behavior in Mod.9Cr-1Mo Steel (열시효가 Mod.9Cr-1Mo강의 재료강도 및 파괴 거동에 미치는 영향)

  • Lee, Hyeong-Yeon;Kim, Woo-Gon;Son, Seok-Kwon;Hong, Suk Woo;Seok, Chang Sung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.101-109
    • /
    • 2016
  • The material properties of heat resistant materials at power plants are affected by thermal aging as operating time is accumulated. In this study, the influence of thermal aging on yield strength, tensile strength and fracture behavior for Mod.9Cr-1Mo (ASME Grade 91) steel which is a material widely adopted for Generation IV nuclear energy system has been investigated and analyzed. Service exposed Gr.91 steel materials sampled from a piping system of an ultra-supercritical (USC) plant in Korea with accumulated operation time of 73,716 hours were used for material testing. The test results of the service exposed material specimens were compared with those of the virgin Gr.91 steel specimens. Those test data were compared with the material properties of ASME code and RCC-MRx code. Conservatisms of the material properties in the design codes have been quantified based on the comparisons of those from virgin and service exposed material specimens.

A Study on the Behavior of Ultrasonic Guided Wave Mode in a Pipe Using Comb Transducer (Comb Transducer를 이용한 파이프 내 유도초음파 모드의 거동에 관한 연구)

  • Park, Ik-Keun;Kim, Yong-Kwon;Cho, Youn-Ho;Ahn, Yeon-Shik;Cho, Yong-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.142-150
    • /
    • 2004
  • A preliminary study of the behavior of ultrasonic guided wave mode in a pipe using a comb transducer for maintenance inspection of power plant facilities has been verified experimentally. The mode identification has been carried out in a pipe using the time-frequency analysis methods such as the wavelet transform(WT) and the short time Fourier transform (STFT), compared with theoretically calculated group velocity dispersion curves for longitudinal and flexural modes. The results are in good agreement with analytical predictions and show the effectiveness of using the time-frequency analysis method to identify the individual modes. It was found out that the longitudinal mode(0,1) is less affected by mode conversion compared with the other modes. Therefore, L(0,1) is selected as an optimal mode for the evaluation of the surface defect in a pipe.

Development of a Coordinated Voltage Regulation Scheme in Distribution Networks with Multiple Distributed Generations (협조 제어를 이용한 분산전원 연계 배전계통의 전압조정 방식 개발)

  • Oh, Yun-Sik;Cho, Kyu-Jung;Kim, Min-Sung;Kim, Ji-Soo;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1309-1316
    • /
    • 2017
  • As penetration level of Distributed Generations (DGs) on weak distribution networks gets higher, voltage rise problem can often occur due to reverse power which is not expected in conventional distribution networks. It, however, cannot be effectively solved by using conventional voltage regulating devices such as On-Load Tap Changers (OLTCs), Step Voltage Regulators (SVRs) because those do not consider the presence of DGs when determining relevant setting parameter for voltage regulation. This paper presents a scheme for voltage regulation using coordinated control between OLTC and DGs which can actively participate in the regulation. The scheme decides which device should be operated first based on the characteristics of regulating devices, in order to prevent unnecessary operation of output changes of DG and excessive tap changing operation of OLTC. Computer simulations considering daily irradiation of PV and load curve are performed by using MATLAB Simulink and performance comparison between the presented scheme and conventional ones is also made. It can be concluded from simulation results that the scheme presented is very effective to regulate voltages in distribution networks with multiple DGs.

FBAR Devices Fabrication and Effects of Deposition Temperature on ZnO Crystal Growth for RF Filter Applications (RF 필터응용을 위한 FBAR 소자제작과 증착온도가 ZnO 박막의 결정성장에 미치는 영향)

  • Munhyuk Yim;Kim, Dong-Hyun;Dongkyu Chai;Mai Linh;Giwan Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.88-92
    • /
    • 2003
  • In this paper, the characteristics of the ZnO films deposited on AI bottom electrode and the temperature effects on the ZnO film growth are presented along with the fabrication and their evaluation of the film bulk acoustic wave resonator (FBAR) devices. All the films used in this work were deposited using a radio-frequency (RF) magnetron sputtering technique. Growth characteristics of the ZnO films are shown to have a strong dependence on the deposition temperatures ranged from room temperature to 35$0^{\circ}C$ regardless of the RF power applied for sputtering the ZnO target. In addition, according to the growth characteristics of the distinguishably different micro-crystal structures and the degree of the c-axis preferred orientation, the deposition temperatures can be divided into 3 temperature regions and 2 critical temperatures in-between. Overall, the ZnO films deposited at/below 20$0^{\circ}C$ are seen to have columnar grains with a highly preferred c-axis orientation where the full width at half maximum (FWHM) of X-ray diffraction rocking curve is 14$^{\circ}$. Based on the experimental findings, several FBAR devices were fabricated and measured. As a result, the FBAR devices show return loss of ~19.5dB at resonant frequency of ~2.05GHz.

  • PDF