• Title/Summary/Keyword: power curve

Search Result 1,268, Processing Time 0.032 seconds

Transcendental Abstraction in Non-geometric Contemporary Architecture - focused on Deleuze's Thinking - (비기하학적 현대건축의 초월론적 추상 - 들뢰즈의 사유를 중심으로 -)

  • Cho, Yong-Soo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.5
    • /
    • pp.107-116
    • /
    • 2019
  • Non-geometric shapes in contemporary architecture was explained from the transcendental schema of Deleuze with his abstraction theory. In this explanation, the intensity, the movement and change and the sublime were suggested as the expressional elements of the transcendental abstraction related with the artistic sensation of architecture. First, the intensity as a power of sensation which acts to the body before the recognition of brain is mainly expressed with the movement of curved lines of architectural space. Second, the movement of change is expressed as the de-centralized and de-formalized nomadic curve as the line in architectural 'smooth space' which has unrestrained orientations. Third, the sublime is expressed in the hugeness, enormousness or sometimes uncanny in void space, which could be contradictively mixed with senses of displeasure and pleasure. The sublime feelings in architecture can be emerging by rationally overcoming the unpleasant senses of contradictive spaces in architecture or urban fabric. This study has explained those expressional elements with the architectural works of Steven Holl, Frank Gehry and Zaha Hadid.

Creep strain modeling for alloy 690 SG tube material based on modified theta projection method

  • Moon, Seongin;Kim, Jong-Min;Kwon, Joon-Yeop;Lee, Bong-Sang;Choi, Kwon-Jae;Kim, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1570-1578
    • /
    • 2022
  • During a severe accident, steam generator (SG) tubes undergo rapid changes in the pressure and temperature. Therefore, an appropriate creep model to predict a short term creep damage is essential. In this paper, a novel creep model for Alloy 690 SG tube material was proposed. It is based on the theta (θ) projection method that can represent all three stages of the creep process. The original θ projection method poses a limitation owing to its inability to represent experimental creep curves for SG tube materials for a large strain rate in the tertiary creep region. Therefore, a new modified θ projection method is proposed; subsequently, a master curve for Alloy 690 SG material is also proposed to optimize the creep model parameters, θi (i = 1-5). To adapt the implicit creep scheme to the finite element code, a partial derivative of incremental creep with respect to the stress is necessary. Accordingly, creep model parameters with a strictly linear relationship with the stress and temperature were proposed. The effectiveness of the model was validated using a commercial finite element analysis software. The creep model can be applied to evaluate the creep rupture behavior of SG tubes in nuclear power plants.

Vibration Fatigue Life for Slot Array RF Antenna Applied to Small Aviation Platform (적층제조 공법이 적용된 소형 항공 플랫폼용 슬롯 배열 초고주파 안테나의 진동피로수명평가에 대한 연구)

  • Kim, Ki-Seung;Kim, Hyo-Tae;Choi, Hye-Yoon;Jung, Hwa-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • Sensors are applied to small aviation platforms for various purposes. Radio frequency (RF) antennas, which are representative sensors, are available in many forms but require the application of slot array RF antennas to ensure high performance and designation. Slot RF array antennas are applied to dip brazing techniques, but the yield and production time are determined by the proficiency of production personnel in a labor-intensive form. Unmanned aerial vehicles or drones, which are representative small aviation platforms, are continuously exposed to various random vibrations because propellers and multiple power sources are used in them. In this study, the fatigue life of slot array RF antennas applied with additive manufacturing was evaluated through the cumulative damage method (Miner's rule) in a vibration environment with a small aviation platform. For the evaluation, an S N curve obtained from a fatigue strength test was used.

Evaluation Study of LCOE for 8 MW Offshore Floating Wind Turbine in Ulsan Region (울산 앞바다 8 MW급 부유식 해상풍력터빈의 LCOE 연구 )

  • Dong Hoon Lee;Hee Chang Lim
    • Journal of Wind Energy
    • /
    • v.14 no.1
    • /
    • pp.5-13
    • /
    • 2023
  • The commercialization has been of great importance to the clean energy research sector for investing the wind farm development, but it would be difficult to reach a social consensus on the need to expand the economic feasibility of renewable energy due to the lack of reliable and continuous information on levelized cost of Energy (LCOE). Regarding this fact, this paper presents the evaluation of LCOE, focusing on Ulsan offshore region targeting to build the first floating offshore wind farm. Energy production is estimated by the meteorology data combined with the Leanwind Project power curve of an exemplar wind turbine. This work aims to analyze the costs of the Capex depending on site-specific variables. The cost of final LCOE was estimated by using Monte-Carlo method, and it became an average range 297,090 KRW/MWh, a minimum of 251,080 KRW/MWh, and a maximum of 341,910 KRW/MWh. In the year 2021, the SMP (system marginal price) and 4.5 REC (renewable energy certificate) can be paid if 1 MWh of electricity is generated by renewable energy. Considering current SMP and REC price, the floating platform industry, which can earn around 502,000 KRW/MWh, can be finally estimated highly competitive in the Korean market.

A Prediction Triage System for Emergency Department During Hajj Period using Machine Learning Models

  • Huda N. Alhazmi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.11-23
    • /
    • 2024
  • Triage is a practice of accurately prioritizing patients in emergency department (ED) based on their medical condition to provide them with proper treatment service. The variation in triage assessment among medical staff can cause mis-triage which affect the patients negatively. Developing ED triage system based on machine learning (ML) techniques can lead to accurate and efficient triage outcomes. This study aspires to develop a triage system using machine learning techniques to predict ED triage levels using patients' information. We conducted a retrospective study using Security Forces Hospital ED data, from 2021 through 2023 during Hajj period in Saudia Arabi. Using demographics, vital signs, and chief complaints as predictors, two machine learning models were investigated, naming gradient boosted decision tree (XGB) and deep neural network (DNN). The models were trained to predict ED triage levels and their predictive performance was evaluated using area under the receiver operating characteristic curve (AUC) and confusion matrix. A total of 11,584 ED visits were collected and used in this study. XGB and DNN models exhibit high abilities in the predicting performance with AUC-ROC scores 0.85 and 0.82, respectively. Compared to the traditional approach, our proposed system demonstrated better performance and can be implemented in real-world clinical settings. Utilizing ML applications can power the triage decision-making, clinical care, and resource utilization.

The effect of the revolution and forwarding speed of the rotary blade on the tilling power requirement (로우터리 경운(耕耘)날의 회전속도(回轉速度) 및 작업속도(作業速度)가 경운소요동력(耕耘所要動力)에 미치는 영향(影響))

  • Kwon, Soon Goo;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.160-175
    • /
    • 1984
  • This study was carried out to analyze the effects of the revolution and forwarding speed of the rotary blade and the edge curves which were $30^{\circ}$ and $40^{\circ}$, on the power requirement of rotary tillage. In this study, the revolutions of the rotary blade considered were 204, 243, 285, 360 rpm, and the forwarding speeds of the rotary system considered were 29.40cm/sec, 46.93em/sec. The power requirements of rotary blade were measured by a dynamic strain gage systems at the soil bin which was filled with artificial soil. The results of the study were summarized as follows: 1. The response surface analysis showed that the revolution and forwarding speed of the rotary shaft had an interacting influence on the torque requirement of the rotary blade. The mathematical model developed by the above was repersented as follow. $$T=a_0+a_1V+a_2R +a_3VR+a_4VR^2$$ where, $a_0=constant$ $a_1,\;a_2,\;a_3,\;a_4=coefficients$ V=forwarding speed of the rotary system. (em/sec) R=revolution of the rotary shaft. (rpm) T=tilling torque requirement. (kg-m) 2. When the maximum tilling torque requirement was analyzed, ${\partial}T/{\partial}R$ was decreased with the increasing revolution of rotary shaft, while ${\partial}T/{\partial}V$ was increased, which was minimum at 200~220 rpm. When the forwarding speeds were increased, ${\partial}T/{\partial}R$ was decreased with increasing rate. 3. When the mean tilling torque requirement was analyzed, ${\partial}T/{\partial}V$ was constant at 320~360 rpm and ${\partial}T/{\partial}R$ was decreased with increasing rate along with the increasing revolution of rotary shaft. 4. When the mean tilling torgue requirement per unit volume of soil was analyzed, ${\partial}T/{\partial}V$ was minimum at 270~300 rpm. ${\partial}T/{\partial}R$ for the forwarding speeds of 29.40cm/sec and 46.93cm/sec was same as that for 280~290 rpm. 5. Increasing the edge curves of the rotary blades, the tilling torque requirement was increased. But other studies showed that the smaller the edge curve, the more straw could be wrapped on blades which resulted in increasing torque requirements. Therefore, the edge curve of rotary blade should be considered for the future study.

  • PDF

Development of Energy Harvesting Hybrid system consisted of Electrochromic Device and Dye-Sensitized Solar Cell using Nano Particle Deposition System (나노 입자 적층 시스템(NPDS)을 이용한 염료 감응 태양전지 - 전기 변색 통합 소자 및 에너지 하베스팅 시스템에 대한 연구)

  • Kim, Kwangmin;Kim, Hyungsub;Choi, Dahyun;Lee, Minji;Park, Yunchan;Chu, Wonshik;Chun, Dooman;Lee, Caroline Sunyong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.65-71
    • /
    • 2016
  • In this study, Antimony Tin Oxide (ATO) ion storage layer and $TiO_2$ working electrode were fabricated using Nano Particle Deposition System. NPDS is the cutting-edge technology among the dry deposition methods. Accelerated particles are deposited on the substrate through the nozzle using NPDS. The thicknesses for coated layers were measured and layer's morphology was acquired using SEM. The fabricated electrochromic cell's transmittance was measured using UV-Visible spectrometer and power source at 630 nm. As a result, the integrated electrochromic/DSSC hybrid system was successfully fabricated as an energy harvesting system. The fabricated electrochromic cell was self-operated using DSSC as a power source. In conclusion, the electrochromic cell was operated for 500 cycles, with 49% of maximum transmittance change. Also the photovoltaic efficiency for DSSC was measured to be 2.55% while the electrochromic cell on the integrated system had resulted in 26% of maximum transmittance change.

A study on the heat transfer characteristics during outward melting process of ice in a vertical cylinder (수직원통형 빙축열조내 외향용융과정시 열전달특성에 관한 연구 -작동유체의 유동방향 및 축열조 형상비에 따른 열성능 비교-)

  • Kim, D.H.;Kim, D.C.;Kim, I.G.;Kim, Y.K.;Yim, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.171-179
    • /
    • 1997
  • During the day time in summer, peak of air conditing load, and electric power management system lies under overloaded condition. The reason is the enlarged peak load value of electric power caused by increased air-cooling load in summer. To prevent load concentration during day time and overloaded condition of power management system, some energy storage methods are suggested. One of these methods is ice storage system. Water has some good properties as P.C.M.(Phase Chang Material) : Its melting point is the range of required operation temperature. It has large specific latent heat and is chemically stable compared to other organic or inorganic substances. It is cheap and easy to treat. This study represents experimental results of heat transfer characteristics of P.C.M. under the outward melting process in a vertical cylinder. We experimented with twelve combinations of conditions, i.e., three different inlet temperatures($7^{\circ}C,\;4^{\circ}C\;and\;1^{\circ}C$), two working fluid directions(upward and downward), and two aspect ratios, H/R(4 and 2). At the inlet temperature of $7^{\circ}C$ and $4^{\circ}C$, there was temperature stagnation region where the temperature of P.C.M. remains constant at $4^{\circ}C$ regardless of aspect ratio and direction of working fluid. This temperature stagnation occurs as the water, at its maximum density, flows down to the lower region. The phase change interface formed bell-shaped curve as the melting process continued. With a new set of conditions(4H/R, inlet temperature $4^{\circ}C$ and $1^{\circ}C$, downward/upwerd inlet direction), the movement of phase change interface was faster when the working flued inlet direction was downward. With the same set of conditions, melting rate and total melting energy were larger when the working fluid inlet direction was downward. The results were reversed when the other sets of conditions were applied.

  • PDF

Parametric Study for the Optimal Integration Design between the Gas Turbine Compressor and the Air Separation Unit of IGCC Power Plant (석탄가스화 복합발전플랜트 가스터빈 압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수연구)

  • Lee, Chan;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle power plant. The present study adopts the ASU of double-distillation column process, from which integration conditions with compressor such as the heat exchanger condition between air and nitrogen, the amount and the pressure of extracted air are defined and mathematically formulated. The performance variations of the compressor integrated with ASU are analyzed by combining streamline curvature method and pressure loss models, and the predicted results are compared with the performance test results of actual compressors to verify the prediction accuracy. Using the present performance prediction method, the effects of pinch-point temperature difference (PTD) in the heat exchanger, the amount and the pressure of extracted air on compressor performances are quantitatively examined. As the extraction air amount or the PTD is increased, the pressure ratio and the power consumption of compressor are increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure level while improving at lower pressure air extraction. Furthermore, through the characteristic curve between generalized inlet condition and efficiency of compressor, optimal integration condition is presented to maximize the compressor efficiency.

  • PDF

Improvement of PWM Driving Control Characteristics for Low Power LED Security Light (저전력형 LED 보안등의 PWM형 구동제어 특성 개선)

  • Park, Hyung-Jun;Kim, Nag-Cheol;Kim, In-Su
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.368-374
    • /
    • 2017
  • In this Paper, we developed a low power type LED security light using LED lighting that substitutes a 220[V] commercial power source for a solar cell module instead of a halogen or a sodium lamp. in addition, a PWM type drive control circuit is designed to minimize the heat generation problem and the drive current of the LED drive controller. in developed system, The light efficiency measurement value is 93.6[lm/W], and a high precision temperature sensor is used inside the controller to control the heat generation of the LED lamp. In order to eliminate the high heat generated from the LED lamp, it is designed to disperse quickly into the atmosphere through the metal insertion type heat sink. The heat control range of LED lighting was $50-55[^{\circ}C]$. The luminous flux and the lighting speed of the LED security lamp were 0.5[s], and the beam diffusion angle of the LED lamp was about $110[^{\circ}C]$ by the light distribution curve based on the height of 6[m].