• Title/Summary/Keyword: power coupler

Search Result 326, Processing Time 0.024 seconds

Development of an SIS(Superconductor-Insulator-Superconductor) Junction Mixer over 120∼180 GHz Band (120∼180 GHz 대역 SIS (Superconductor-Insulator-Superconductor) 접합 믹서의 개발)

  • Chung, Moon-Hee;Lee, Changhoon;Kim, Kwang-Dong;Kim, Hyo-Ryoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.737-743
    • /
    • 2004
  • A fixed-tuned SIS(Superconductor-Insulator-Superconductor) mixer across 120∼180 GHz band has been developed. This mixer employs an SIS chip fabricated by Nobeyama radio observatory which consists of a series array of 6 Nb/Al-Al$_2$O$_3$/Nb junctions in a microstrip line on a fused quartz substrate. The SIS chip is placed at the center of the half-height waveguide mixer mount to have a good incoming signal coupling over the whole frequency band. No mechanical tuner was used in the SIS mixer and the RF signal and local oscillator power are injected to the mixer via a cooled cross-guide coupler. In order to prevent the IF signal loss, the If output impedance of the SIS mixer was matched to the 50 $\Omega$ input impedance of the IF chain. Measured double sideband noise temperatures of a receiver using the SIS mixer are 32∼131 K over 120∼180 GHz band. The developed SIS mixer is now in use for radio astronomical observations on the TRAO 14 m radio telescope.

Frequency Multiplier Using Diplexer based on CRLH Transmission Line (CRLH 전송선로를 기반으로 한 다이플렉서를 이용한 주파수 체배기)

  • Kim, Seung-Hwan;Kim, Young;Lee, Young-Soon;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.66-73
    • /
    • 2010
  • This paper proposes the frequency multiplier using diplexer based on CRLH transmission line with dualband characteristic. The diplexer is separated the output signals of harmonic generator, which is generated the harmonic signals using nonlinear device. The diplexer consists of the inphase power divider, 0o/90o phase controller and dual-band quadrature hybrid coupler. This send out the selecting output signals of the harmonic signals and suppresses out of signals. To validate a function of multiplier, the harmonic generator and diplexer with 2 GHz and 3 GHz operating frequency range is implemented. As a result, the proposed frequency multiplier is operated normally.

Six-port direct conversion receiver front-end with carrier recovery circuit and phase shifter using multi-layer coupled line (다층형 결합 선로를 이용한 반송파복원기와 위상 변위기를 갖는 6-단자 직접 변환 수신 전처리부)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2267-2272
    • /
    • 2009
  • The six-port direct conversion receiver front-end that is comprised of a carrier recovery and a phase shifter, which gets the same structure with six-port phase correlator using the multi-layer coupled line, was designed and fabricated in this paper. The six-port element that is comprised of the power divider and the hybrid coupler is designed by multi-layer coupled line structure. The multi-coupled structure is utilized as the basic structure in receiver phase correlator, carrier recovery circuit and phase shifter. The receiver front-end with the same multi-layer coupled line structure for the receiver elements shows the simple structure and no difficulty in integration. The fabricated multi-layer coupled six-port receiver front-end re-generates the carrier signal with a constant phase and demodulates the PSK transmission signal.

Feature Extraction of Simulated fault Signals in Stator Windings of a High Voltage Motor and Classification of Faulty Signals

  • Park, Jae-Jun;Jang, In-Bum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.965-975
    • /
    • 2005
  • In the case of the fault in stator windings of a high voltage motor. it facilitates certain destructive characteristics in insulations. This will result in a decreased reliability in power supplies and will prevent the generation of electricity, which will result in huge economic losses. This study simulates motor windings using normal windings and four faulty windings for an actual fault in stator winding of a high voltage motor. The partial discharge signals produced in each faulty winding were measured using an 80 PF epoxy/mica coupler sensor. In order to quantified signal waves its a way of feature extraction for each faulty signal, the signal wave of winding was quantified to measure the degree of skewness shape and kurtosis, which are both types of statistical parameters, using a discrete wavelet transformation method for each faulty type. Wave types present different types lot each faulty type, and the skewness and kurtosis also present different quantified values. The result of feature extraction was used as a preprocessing stage to identify a certain fault in stater windings. It is evident that the type of faulty signals can be classified from the test results using faulty signals that were randomly selected from the signal, which was not applied in the training after the training and learning period, by applying it to a back-propagation algorithm due to the supervising and learning method in a neural network in order to classify the faulty type. This becomes an important basis for studying diagnosis methods using the classification of faulty signals with a feature extraction algorithm, which can diagnose the fault of stator windings in the future.

Fourier Domain Optical Coherence Tomography for Retinal Imaging with 800-nm Swept Source: Real-time Resampling in k-domain

  • Lee, Sang-Won;Song, Hyun-Woo;Kim, Bong-Kyu;Jung, Moon-Youn;Kim, Seung-Hwan;Cho, Jae-Du;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.293-299
    • /
    • 2011
  • In this study, we demonstrated Fourier-domain/swept-source optical coherence tomography (FD/SS-OCT) at a center wavelength of 800 nm for in vivo human retinal imaging. A wavelength-swept source was constructed with a semiconductor optical amplifier, a fiber Fabry-Perot tunable filter, isolators, and a fiber coupler in a ring cavity. Our swept source produced a laser output with a tuning range of 42 nm (779 to 821 nm) and an average power of 3.9 mW. The wavelength-swept speed in this configuration with bidirectionality is 2,000 axial scans per second. In addition, we suggested a modified zero-crossing method to achieve equal sample spacing in the wavenumber (k) domain and to increase the image depth range. FD/SS-OCT has a sensitivity of ~89.7 dB and an axial resolution of 10.4 ${\mu}m$ in air. When a retinal image with 2,000 A-lines/frame is obtained, an acquisition speed of 2.0 fps is achieved.

A Study on the Integrated-Optical Electric-Field Sensor utilizing Ti:LiNbO3 Y-fed Balanced-Bridge Mach-Zehnder Interferometric Modulators (Ti:LiNbO3 Y-fed Balanced-Bridge 마하젠더 간섭 광변조기를 이용한 집적광학 전계센서에 관한 연구)

  • Jung, Hongsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • We have demonstrated a $Ti:LiNbO_3$ electro-optic electric-field sensors utilizing a $1{\times}2$ Y-fed balanced-bridge Mach-Zehnder interferometric (YBB-MZI) modulator which uses a 3-dB directional coupler at the output and dipole patch antenna. The operation and design were proved by the BPM simulation. A dc switching voltage of ~16.6 V and an extinction ratio of ~14.7 dB are observed at a wavelength of $1.3{\mu}m$. For a 20 dBm rf power, the minimum detectable electric-fields are ~1.12 V/m and ~3.3 V/m corresponding to a dynamic range of about ~22 dB and ~18 dB at frequencies 10 MHz and 50 MHz, respectively. The sensors exhibit almost linear response for the applied electric-field intensity from 0.29 V/m to 29.8 V/m.

Design and fabrication of multi-band six-port phase correlator using metamaterial (메타물질 구조 다중대역 6단자 위상상관기 설계 및 제작)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2615-2621
    • /
    • 2010
  • The multi-band six-port phase correlator using metamaterial was designed and fabricated in this paper. The lumped metamaterial structure that can process the dual-band receiving signal was analyzed. Based on the analyzed results, the small-sized metamatrial six-port phase correlator for multi-band direct conversion method was proposed and fabricated. Also, the resistive power divider and $90^{\circ}$ hybrid coupler that comprises the six-port phase correlator were implemented based on the scattering parameters of metamatrial six-port phase correlator. The measured results of the proposed six-port phase correlator show the good agreement with simulation results. The performance of the six-port phase correlator shows the reflection loss below -20 dB in the dual-band. Also, the proposed six-port phase correlator got a good transmission characteristic within 1 dB gain difference and ${\pm}4.1^{\circ}$ phase imbalance, respectively.

Light Coupling and Propagation Between a Fiber and a Dielectric Slab with a Conductor Cladding (측면 연마된 광섬유와 완전도체면 아래의 유전체 사이에서의 결합과 전파특성의 해석)

  • Kwon, Kwang-Hee;Yoon, Ki-Hong;Kim, Jeong-Hoon;Song, Jae-Won;Park, Euy-Dong;Son, Seok-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.70-79
    • /
    • 2003
  • A theoretical presentation of evanescent coupling is offered with respect to the refractive indexes between a side polished optical fiber and an infinitely planar waveguide with a conductor cladding(PWGCC). The PWG is suspended at a constant distance from an unclad fiber core and attached with the perfect conductor(PEC) on one side. The behavior of the distributed coupler is examined using a coupled mode model, which takes account of the two dimensions of the waveguide configuration. The coupling and propagation of light were found to depend on both the relationship between the refractive index values of each structure and the configuration of the side polished fiber used in the PWGCC. The spreading of light in the unconfined direction of the PWGCC is described in terms of a simple geometrical interpretation of the synchromization condition that is in agreement with a previous investigation of the problem based on the coupled-mode theory(CMT). The power of the light propagation in the fiber decreased exponentially along the fiber axis as it was transferred to the PWGCC.

Design and Fabrication of Ka-band Waveguide Combiner with High Efficiency and High Isolation Characteristics (고효율 및 높은 격리 특성을 갖는 Ka 대역 도파관 결합기 설계 및 제작)

  • Kim, Hyo-Chul;Cho, Heung-Rae;Lee, Ju-Heun;Lee, Deok-Jae;An, Se-Hwan;Lee, Man-Hee;Joo, Ji-Han;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.35-42
    • /
    • 2022
  • In this paper, a method to increase the combining efficiency and isolation of the combiner, the core module of SSPA (solid state amplifier), was studied. Specifically, the isolation was secured by matching the common port and the isolation port in the waveguide combiner. The matching structure for matching is in the form of a circular disk and is engraved inside the waveguide combiner. The structure is very simple, so it is possible to secure stable performance. And this structure showed more than 60 times higher critical power performance compared to previous studies, confirming that it is suitable for high output. And by combining 1-stage T-junction and 2, 3 stage MagicT combiner, miniaturization was achieved and the combining efficiency was optimized by reducing the insertion loss. The fabricated waveguide coupler obtained an isolation of 16dB or more and a coupling efficiency of 86.2%.

Low beta superconducting cavity system design for HIAF iLinac

  • Mengxin Xu;Yuan He;Shengxue Zhang;Lubei Liu;Tiancai Jiang;Zehua Liang;Tong Liu;Yue Tao;Chunlong Li;Qitong Huang;Fengfeng Wang;Hao Guo;Feng Bai;Xianbo Xu;Shichun Huang;Xiaoli Li;Zhijun Wang;Shenghu Zhang;Jiancheng Yang;Evgeny Zaplatin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2466-2473
    • /
    • 2023
  • A superconducting ion-Linac (iLinac), which is supposed to work as the injector in the High Intensity heavy-ion Accelerator Facility project, is under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. The iLinac is a superconducting heavy ion linear accelerator approximately 100 meters long and contains 96 superconducting cavities in two types of 17 cyromodules. Two types of superconducting resonators (quarter-wave resonators with a frequency of 81.25 MHz and an optimal beta β = v/c = 0.07 called QWR007 and half-wave resonators with a frequency of 162.5 MHz and an optimal beta β = 0.15 called HWR015) have been investigated. The cavity design included extensive multi-parameter electromagnetic simulations and mechanical analysis, and its results are described in details. The fundamental power coupler and cavity dynamic tuner designs are also presented in this article. The prototypes are under manufacturing and expected to be ready in 2023.