Browse > Article
http://dx.doi.org/10.3807/JOSK.2011.15.3.293

Fourier Domain Optical Coherence Tomography for Retinal Imaging with 800-nm Swept Source: Real-time Resampling in k-domain  

Lee, Sang-Won (BT Convergence Research Department, IT Convergence Research Laboratory, Electronics and Telecommunications Research Institute)
Song, Hyun-Woo (BT Convergence Research Department, IT Convergence Research Laboratory, Electronics and Telecommunications Research Institute)
Kim, Bong-Kyu (BT Convergence Research Department, IT Convergence Research Laboratory, Electronics and Telecommunications Research Institute)
Jung, Moon-Youn (BT Convergence Research Department, IT Convergence Research Laboratory, Electronics and Telecommunications Research Institute)
Kim, Seung-Hwan (BT Convergence Research Department, IT Convergence Research Laboratory, Electronics and Telecommunications Research Institute)
Cho, Jae-Du (Department of Cogno-Mechatronics Engineering, Pusan National University)
Kim, Chang-Seok (Department of Cogno-Mechatronics Engineering, Pusan National University)
Publication Information
Journal of the Optical Society of Korea / v.15, no.3, 2011 , pp. 293-299 More about this Journal
Abstract
In this study, we demonstrated Fourier-domain/swept-source optical coherence tomography (FD/SS-OCT) at a center wavelength of 800 nm for in vivo human retinal imaging. A wavelength-swept source was constructed with a semiconductor optical amplifier, a fiber Fabry-Perot tunable filter, isolators, and a fiber coupler in a ring cavity. Our swept source produced a laser output with a tuning range of 42 nm (779 to 821 nm) and an average power of 3.9 mW. The wavelength-swept speed in this configuration with bidirectionality is 2,000 axial scans per second. In addition, we suggested a modified zero-crossing method to achieve equal sample spacing in the wavenumber (k) domain and to increase the image depth range. FD/SS-OCT has a sensitivity of ~89.7 dB and an axial resolution of 10.4 ${\mu}m$ in air. When a retinal image with 2,000 A-lines/frame is obtained, an acquisition speed of 2.0 fps is achieved.
Keywords
Optical coherence tomography; Swept source; Retina; Ophthalmology;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, "High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs," Opt. Express 16, 2547-2554 (2008).   DOI
2 W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, ">400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging," Opt. Lett. 35, 2919-2921 (2010).   DOI   ScienceOn
3 M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, "Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications," Proc. SPIE 7554, 75541F (2010).
4 K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. Chong, "MEMS scanner based swept source laser for optical coherence tomography," Proc. SPIE 7554, 75542Q (2010).
5 J. U. Kang, J.-H. Han, X. Liu, and K. Zhang, "Commonpath optical coherence tomography for biomedical imaging and sensing," J. Opt. Soc. Korea 14, 1-13 (2010).   DOI   ScienceOn
6 U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).   DOI
7 C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, "Nearinfrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004).   DOI   ScienceOn
8 S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).   DOI   ScienceOn
9 R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).   DOI
10 A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications," Opt. Lett. 31, 760-762 (2006).   DOI   ScienceOn
11 M. Jeon, J. Zhang, and Z. Chen, "Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging," Opt. Express 16, 3727-3737 (2008).   DOI
12 V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for threedimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).   DOI   ScienceOn
13 W. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992).   DOI   ScienceOn
14 A. N. S. Institute, "American national standard for safe use of lasers," in ANSI Z 136-1 (2000).
15 B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. St. J. Russell, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986 (2003).   DOI
16 V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, "High-speed, highresolution optical coherence tomography and retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett. 32, 361-363 (2007).   DOI   ScienceOn
17 R. S. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).   DOI
18 H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006).   DOI
19 H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12902-12908 (2006).   DOI
20 S.-W. Lee, C.-S. Kim, and B.-M. Kim, "External line-cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).   DOI   ScienceOn
21 D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1436-1438 (2003).   DOI   ScienceOn
22 B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-highspeed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).   DOI
23 Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).   DOI
24 M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).   DOI
25 S.-W. Lee, H.-W. Jeong, B.-M. Kim, Y.-C. Ahn, W. Jung, and Z. Chen, "Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 ${\mu}m$," J. Korean Phys. Soc. 55, 2354-2360 (2009).   과학기술학회마을   DOI   ScienceOn
26 B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, "Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second," Opt. Express 18, 20029-20048 (2010).   DOI
27 C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).   DOI   ScienceOn
28 W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, "Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second," Opt. Express 18, 14685-14704 (2010).   DOI
29 T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, "Megahertz OCT for ultrawide-field retinal imaging with a 1050nm Fourier domain mode-locked laser," Opt. Express 19, 3044-3062 (2011).   DOI
30 D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).   DOI
31 J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, "Optical coherence tomography: a new tool for glaucoma diagnosis," Curr. Opin. Ophthalmol. 6, 89-95 (1995).   DOI   ScienceOn
32 J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography," Arch. Ophthalmol. 113, 586-596 (1995).   DOI   ScienceOn
33 J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).   DOI   ScienceOn
34 S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11, 3598-3604 (2003).   DOI
35 R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).   DOI
36 M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).   DOI