• 제목/요약/키워드: power converters

검색결과 1,409건 처리시간 0.022초

태양광 시스템용 단상 및 3-레벨 부스트 컨버터의 효율 및 전력밀도 비교 분석 (Comparative Analysis of Efficiency and Power Density of Single-Phase and 3-Level Boost Converters for PV System)

  • 김철민;김종수
    • 전력전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.127-132
    • /
    • 2020
  • In this study, single-phase and three-level boost converters applied to the photovoltaic system were compared and analyzed in terms of efficiency and power density according to the input voltage and load conditions. For accurate analysis of efficiency, the losses in each device of the single-phase and three-level boost converters were derived using mathematical equations and simulations by using the PSIM thermal module. Then, the losses were compared with the efficiency confirmed through the actual experiments. Results confirmed that the efficiency and power density can be improved by applying the three-level boost converter to the system according to the selection of the switching frequency.

이터 초전도자석 전원공급장치 현장 설치현황 및 시운전 계획 (KO AC/DC Converter System Installation Status and Commissioning Plan at ITER Site)

  • 송인호;오종석
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.397-401
    • /
    • 2022
  • The construction of the ITER tokamak machine is ongoing at a 77% process rate to achieve the first plasma in 2025. The 18 sets of power supply systems comprising 400 MVA thyristor AC/DC converters for the superconducting magnets supplied by Korea (KO) are being installed with other systems, such as PF converters (China), DC busbars (Russia), and cooling water systems (India), in two buildings (Europe). The system interfaces have been defined during the design stage, and the systems have been manufactured. However, during the on-site installation work, several installation and integration issues emerged due to the manufacturing tolerance and design mistakes. To continue the installation and testing, the engineers of each system resolved the interface issues, planned the commissioning, and integrated the test plan. This paper describes the on-site installation status and issues and the commissioning plan of KO AC/DC converters.

Boost-Half Bridge Single Power Stage PWM DC- DC Converters for PEM-Fuel Cell Stacks

  • Kwon, Soon-Kurl;Sayed, Khairy F.A.
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.239-247
    • /
    • 2008
  • This paper presents the design of 1 kW prototype high frequency link boost half bridge inverter-fed DC-DC power converters with bridge voltage-doublers suitable for small scale PEM fuel cell systems and associated control schemes. The operation principle of this converter is described using fuel cell modeling and some operating waveforms. The switching mode equivalent circuits are based on simulation results and a detailed circuit operation analysis at soft-switching conditions.

ZCT방식을 이용한 두 개의 컨버터 병렬 운전 시고장 검출 및 분리 (Fault Detection And Isolation Of Two DC-DC Converters Parallel Operation By ZCT Method)

  • 박상은
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.172-176
    • /
    • 2000
  • The paper presents the fault detection and isolation of two DC-DC converters parallel operation by ZCT method. Two experimental prototype converters were designed and implemented for evaluation of fault tolerant system. The experimental results show that fault detection and isolation circuit works very well.

  • PDF

LMI-Based Robust Controllers for DC-DC Cascade Boost Converters

  • Torres-Pinzon, Carlos Andres;Giral, Roberto;Leyva, Ramon
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.538-547
    • /
    • 2012
  • This paper presents two different robust controllers for boost converters with two stages in a cascade. The first robust controller is monovariable; that is, the duty-cycle is the same for the two switches. The monovariable controller ensures that some prescribed constraints on pole placement and control effort are met, and optimizes the load disturbance rejection, while takes into account the uncertainty in certain parameters. The first controller is then compared with a multivariable robust controller; that is, with independent duty cycles in each switch. The multivariable controller takes into account the same uncertainty, constraints and optimization function. The comparison shows that the multivariable controller performs better at the expense of a slightly more complex implementation; that is, the multivariable controller provides a better rejection of the load disturbance. The paper also describes simulations and experimental results that are in perfect agreement with theoretical derivations.

An Open Circuit Fault Diagnostic Technique in IGBTs for AC to DC Converters Applied in Microgrid Applications

  • Khomfoi, Surin;Sae-Kok, Warachart;Ngamroo, Issarachai
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.801-810
    • /
    • 2011
  • An open circuit fault diagnostic method in IGBTs for the ac to dc converters used in microgrid applications is developed in this paper. An ac to dc converter is a key technology for microgrids in order to interface both distributed generation (DG) and renewable energy resources (RES). Also, highly reliable ac to dc converters are necessary to keep converters in continuous operation as long as possible during power switch fault conditions. Therefore, the proposed fault diagnostic method is developed to reduce the fault detection time and to avoid any other fault alarms because continuous operation is desired. The proposed diagnostic method is a combination of the absolute normalized dc current technique and the false alarm suppression algorithm to overcome the long fault detection time and fault alarm problems. The simulation and experimental results show that the developed fault diagnostic method can perform fault detection within about one cycle. The results illustrate that the reliability of an ac to dc converter interfaced with a microgrid can be improved by using the proposed fault diagnostic method.

A New ZVS-PWM Full-Bridge Boost Converter

  • Baei, Mohammadjavad;Narimani, Mehdi;Moschopoulos, Gerry
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.237-248
    • /
    • 2014
  • Pulse-width modulated (PWM) full-bridge boost converters are used in applications where the output voltage is considerably higher than the input voltage. Zero-voltage-switching (ZVS) is typically implemented in these converters. A new ZVS-PWM full-bridge converter is proposed in this paper. The proposed converter does not have any of the disadvantages associated with other converters of this type, including a complicated auxiliary circuit, increased current stresses in the main power switches, and load-dependent ZVS operation. The operation of the proposed converter, its steady-state characteristics, and its design are explained and examined. The feasibility of the converter is confirmed with results obtained from an experimental prototype.

Multi-Level Operation with Two-Level Converters through a Double-Delta Source Connected Transformer

  • Park, Yongsoon;Ohn, Sungjae;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1093-1099
    • /
    • 2014
  • This paper proposes a power conversion topology involving a multi-winding transformer and converters. The fundamental idea is described with circuit diagrams, and the voltage output of the proposed topology is analyzed mathematically. The effectiveness of the topology is discussed with test results from a small-scale power conversion system. When conventional hardware consisting of two-level converters and a transformer is employed, multi-level voltage outputs can be applied to the transformer windings by the proposed method.

Novel Third Harmonic Current Injection Technique for Harmonic Reduction of Controlled Converters

  • Eltamaly, Ali M.
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.925-934
    • /
    • 2012
  • Three-phase controlled converters have many applications in the utility interfacing of renewable energy sources and adjustable speed drives as a rectifier or inverter. The utility line currents of these converters have a high harmonic distortion, which is more than the harmonic standards. This paper introduces a new technique for circulating the third harmonic currents from the dc-link to the line currents to reduce their harmonic contents. The proposed system uses a single-phase PWM converter to control the angle and amplitude of the injection current for each of the firing angle of a three-phase converter. A detailed analysis is introduced to achieve a relationship between the firing angle of the three-phase controlled converter and the power angle of the PWM converter. In addition, a detailed design for the other injection path components is introduced. A simulation and experimental work is introduced to prove the mathematical derivations. Analysis, simulation and experimental results prove the superiority of the proposed technique.

Digital Current Controller with Smith-Predictor for PWM Converters

  • 이진우
    • 전력전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.7-11
    • /
    • 1996
  • From the cost-effective point of view, it is very important to design a current with the highest utilization factor of current capacity of power devices. This can be accomplished by a current controller without overshoot irrespective of the varying bounds of control voltage in PWM converters and the dead time due to the time delay. This paper suggests a novel decoupled controller with Smith-Predictor which has the fast control response without overshoot and steady stats error and also deal with the design method of the controller for PWM converters. The extensive digital simulations done by SIMULINK/MATLAB show that the suggested controller guarantees the full utilization of current capacity of power devices and the decoupled current control behavior.

  • PDF