• Title/Summary/Keyword: power converters

Search Result 1,409, Processing Time 0.022 seconds

Transient Performance Improvement in the Boundary Control of Boost Converters using Synthetic Optimized Trajectory

  • Feng, Gaohui;Yuan, Liqiang;Zhao, Zhengming;Ge, Junjie;Ye, Xiuxi;Lu, Ting
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.584-597
    • /
    • 2016
  • This paper focuses on an improvement in the transient performance of Boost converters when the load changes abruptly. This is achieved on the basis of the nature trajectory in Boost converters. Three key aspects of the transient performance are analyzed including the storage energy change law in the inductors and capacitors of converters during the transient process, the ideal minimum voltage deviation in the transient process, and the minimum voltage deviation control trajectory. The changing relationship curve between the voltage deviation and the recovery time is depicted through analysis and simulations when the load suddenly increases. In addition, the relationship curve between the current fluctuation and the recovery time is obtained when the load suddenly decreases. Considering the aspects of an increasing and decreasing load, this paper proposes the transient performance synthetic optimized trajectory and control laws. Through simulation and experimental results, the transient performances are compared with the other typical three control methods, and the ability of proposed synthetic trajectory and control law to achieve optimal transient performance is verified.

Single-Stage Double-Buck Topologies with High Power Factor

  • Pires, Vitor Fernao;Silva, Jose Fernando
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.655-661
    • /
    • 2011
  • This paper presents two topologies for single-stage single-phase double-buck type PFC converters, designed to operate at high power factor, near sinusoidal input currents and adjustable output voltage. Unlike the known buck type PFC topologies, in which the output voltage is always lower than the maximum input voltage, the proposed converters can operate at output voltages higher than the ac input peak voltage. A reduced number of switches on the main path of the current are another characteristic of the two proposed topologies. To shape the input line currents, a fast and robust controller based on a sliding mode approach is proposed. This active non-linear control strategy, applied to these converters allows high quality input currents. A Proportional Integral (PI) controller is adopted to regulate the output voltage of the converters. This external voltage controller modulates the amplitude of the sinusoidal input current references. The performances of the presented rectifiers are verified with experimental results.

A Simple Grid-Voltage-Sensorless Control Scheme for PFC Boost Converters

  • Nguyen, Cong-Long;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.712-721
    • /
    • 2014
  • This paper introduces a simple grid-voltage-sensorless control scheme for single-phase power factor correction (PFC) boost converters. The grid voltage waveform is obtained based on the dc output voltage, the switching duty ratio, and a phase-lead compensator. In addition, the duty ratio feedback is utilized to obtain the unity input power factor and the zero harmonic current. The proposed control scheme is designed and mathematically analyzed based on a small-signal model of PFC boost converters. To verify the effectiveness of the proposed control scheme, several simulations and experiments are carried out in two applications: an industrial power system with a 60 Hz grid frequency and a commercial aircraft application with a 400 Hz grid frequency.

Research on High Efficiency Non-Isolated Push-Pull Converters with Continuous Current in Solar-Battery Systems

  • Li, Yan;Zheng, Trillion Q.;Chen, Qian
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.432-443
    • /
    • 2014
  • In order to improve the output efficiency of solar cells and to extend the life span of batteries, the input currents of converters are required to be continuous. If low output voltage ripple is required at the same time, it is obvious that the application of basic two-order converters (such as Buck and Boost derived converters) will not be good enough. In this paper, a lot of non-isolated push-pull converters (NIPPCs) with continuous current will be introduced due to their lower current stress, higher efficiency and better EMC performance. By decomposing the converters into push-pull cells, inductor and free-wheeling diodes, two families of NIPPCs based on single inductor and coupled inductor separately are systematically generated. Furthermore, characteristics analyses for some of the generated converters are also shown in this paper. Finally, two prototypes based on the corresponding typical topologies are built in the lab to verify the theoretical outcomes.

Family of Isolated Zero Current Transition PWM Converters

  • Adib, Ehsan;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.156-163
    • /
    • 2009
  • In this paper a family of zero current transition PWM converters which employs a simple auxiliary circuit is introduced. This soft switched auxiliary circuit is only composed of a switch and a capacitor. The proposed converters are analyzed and various operating modes of the ZCT flyback converter are discussed. Design considerations are presented and the experimental results of the ZCT flyback converter laboratory prototype are illustrated. The experimental results confirm the validity of theoretical analysis.

System Construction Method of Parallel Operation System constructed with Three Electric Power Converters

  • Ishikura, Keisuke;Inaba, Hiromi;Kishine, Keiji;Nakai, Mitsuki;Ito, Takuma
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.451-457
    • /
    • 2014
  • Parallel operation systems have an advantage in that they can be constructed quickly and inexpensively by combining existing electric power converters. However, in this case, there is a peculiar problem in that a cross current flows between the electric power converters. To design a control system more simply and commonalize the core of combination reactors, we reviewed a system construction method for parallel operation systems constructed with three electric power converters.

Performance Improvement using Auxiliary Converter on HVDC System (보조 컨버터를 이용한 HVDC 시스템의 특성개선)

  • Kim, Dong-Hee;Lee, Hwa-Chun;Park, Sung-Jun;Nam, Hae-Kon;Choi, Joon-Ho;Kim, Kwang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.217-224
    • /
    • 2009
  • This paper presents a new AC/DC converter scheme for HVDC system to achieve a high power factor operation. The new AC/DC converter consists of two 12-pulse bridge converters in series: the primary and auxiliary converters. Ignition angles of the main and auxiliary converters are controlled independently to maintain the nominal DC voltage and control auxiliary voltage. The resulted DC voltage obtained by superimposing the above two phase modulated voltages can be controlled very rapidly over a wide range, and a high power factor operation is achieved. Performance improvements in power factor and harmonic distortion are validated by theoretic derivations and experiments with prototype HVDC system. With the proposed converters, investment for reactive power compensation and filter in HVDC system can be saved significantly.

A study on comparison of efficiency characteristics for half bridge type DC-DC converters (하프브릿지형 DC-DC 컨버터의 효율특성 비교에 관한 연구)

  • Lee Kwang-Tek;Ahn Tae-Young;Kim Sung-Cheol;Ryu Byoung-Woo;Bong Sang-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.356-359
    • /
    • 2006
  • This paper presented the power losses comparison results with the Active clamp Forward, the Asymmetrical half bridge and the Two transistor forward converters. To estimate for conduction losses in the converters, the steady state analysis regard to parasitic resistance and current effective values for main parts of converters was derived. In addition, the theoretical efficiency for the converters with input voltage 400V, output voltage 12V and maximum power 480W was discussed.

  • PDF

Super-Lift DC-DC Converters: Graphical Analysis and Modelling

  • Zhu, Miao;Luo, Fang Lin
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.854-865
    • /
    • 2009
  • Super-lift dc-dc converters are a series of advanced step-up dc-dc topologies that provide high voltage transfer gains by super-lift techniques. This paper presents a developed graphical modelling method for super-lift converters and gives a thorough analysis with a consideration of the effects caused by parasitic parameters and diodes' forward voltage drop. The general guidelines for constructing and deriving graphical models are provided for system analysis. By applying it to examples, the proposed method shows the advantages of high convenience and feasibility. Both the circuit simulation and experimental results are given to support the theoretical analysis.

Classification and Characteristics Analysis of SR Converters (SR 컨버터의 분류 및 특성해석)

  • Ahn, So-Yeon;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.11-12
    • /
    • 2010
  • This paper reviewed and analyzed converters for SRM drive. SR converter has two parts, front ends and power converter. Since the capacitive front-end is widely used in voltage source converter, this paper focuses on topologies with the front-end. A novel classification of power converters for SR drives based on the commutation type is also introduced and analyzed.

  • PDF