• 제목/요약/키워드: power conversion efficiency

검색결과 1,153건 처리시간 0.027초

High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

  • Parastar, Amir;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.737-745
    • /
    • 2013
  • Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component's size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.

Interfacially Controlled Hybrid Thin-film Solar Cells Using a Solution-processed Fullerene Derivative

  • 남상길;송명관;김동호;김창수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.190.2-190.2
    • /
    • 2014
  • We report the origin of the improvement of the power conversion efficiency (PCE) of hybrid thin-film solar cells when a soluble C60 derivative, [6,6]-phenyl-$C_{61}$-butyric acid methyl ester (PCBM), is introduced as a hole-blocking layer. The PCBM layer could establish better interfacial contact by decreasing the reverse ark-saturation current density, resulting in a decrease in the probability of carrier recombination. The power conversion efficiency of this optimized device reached a maximum value of 8.34% and is the highest yet reported for hybrid thin-film solar cells.

  • PDF

에너지 효율분석을 통한 DC 마이크로그리드의 타당성 검토 (A Feasibility Study on DC Microgrids Considering Energy Efficiency)

  • 유철희;정일엽;홍성수;채우규;김주용
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1674-1683
    • /
    • 2011
  • More than 80% of electric loads need DC electricity rather than AC at the moment. If DC power could be supplied directly to the terminal loads, power conversion stages including rectifiers, converters, and power adapters can be reduced or simplified. Therefore, DC microgrids may be able to improve energy efficiency of power distribution systems. In addition, DC microgrids can increase the penetration level of renewable energy resources because many renewable energy resources such as solar photovoltaic(PV) generators, fuel cells, and batteries generate electric power in the form of DC power. The integration of the DC generators to AC electric power systems requires the power conversion circuits that may cause additional energy loss. This paper discusses the capability and feasibility of DC microgrids with regard to energy efficiency analysis through detailed dynamic simulation of DC and AC microgrids. The dynamic simulation models of DC and AC microgrids based on the Microgrid Test System in KEPCO Research Institute are described in detail. Through simulation studies on various conditions, this paper compares the energy efficiency and advantages of DC and AC microgrids.

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • 강경호;권영수;송인영;박성해;박태호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF

Efficient Switch Mode Power Supply Design with Minimum Components for 5W Output Power

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권1호
    • /
    • pp.79-86
    • /
    • 2009
  • This paper presents a flyback technology in power conversion aimed at increasing efficiency and power density, reducing cost and using minimum components in AC-DC conversion. The proposed converter provides these features for square waveforms and constant frequency PWM. It is designed to operate in a wide input voltage range of 75-265VAC RMS with two output voltages of 5V and 20V respectively and full load output power of 5W. The proposed converter is suitable for high efficiency and high power density application such as LCDs, TV power modules, AC adapters, motor control, appliance control, telecom and networking products.

상용 디젤엔진용 산화촉매의 배출가스 저감 특성 (Emission Characteristics of Diesel Oxidation Catalysts for a Commercial Diesel Engine)

  • 최병철;이춘희;박희주;정명근;권정민;신병선;김상수
    • 동력기계공학회지
    • /
    • 제6권2호
    • /
    • pp.18-23
    • /
    • 2002
  • Recently, as people pay attention to the environmental pollution, the emission of diesel engine has become a serious problem. Diesel Oxidation Catalysts(DOC) were experimentally investigated for the purification of pollutants exhaust emission from the diesel engine. In this study, the conversion efficiency of exhaust gas was investigated with various washcoat materials of the DOC. It was formed that CO conversion efficiency depended on temperature, but THC conversion was dominated by temperature and space velocity. Conversion efficiency of THC and CO increased with the addition of ZSM-5 in the washcoat, whereas these conversion efficiency decreased by adding Nd and Ba additives. $V_2O_5$ additive had the thermal stability for high temperature. Thermal durability of the catalyst was improved as increase of $V_2O_5$ additive.

  • PDF

마이크로파 무선전력전송을 위한 렉테나 설계와 구현 (Design and Fabrication of Rectenna for Microwave Wireless Power Transmission)

  • 박정흠
    • 조명전기설비학회논문지
    • /
    • 제20권6호
    • /
    • pp.43-48
    • /
    • 2006
  • 본 논문에서는 마이크로파를 이용한 무선전력전송시스템을 구현하기 위해 2.45[GHz] 마이크로파를 수신하여 직류전력으로 변환하는 렉테나를 설계, 구현하고, RF-DC변환효율을 높이기 위한 임피던스 매칭 및 튜닝 방법을 제시하였다. 구현된 렉테나는 넓은 Open Stub를 사용하여, 쉽게 튜닝이 가능하며, 정류회로의 RF-DC변환효율은 5[dBm]입사전력에 대하여, 최대 59[%]를 얻을 수 있었다. 제작된 패치안테나와 정류회로를 이용하여 소전력무선전송시스템을 구현한 결과, 송수신거리가 1[m]떨어진 거리에서 2.2[V], 1.5[mW]의 직류전력송신이 이루어졌으므로, 소전력 디지털시스템의 운용에 적용가능한 값을 얻을 수 있었다.

STEADY-STATE OPTIMIZATION OF AN INTERNAL COMBUSTION ENGINE FOR HYBRID ELECTRIC VEHICLES

  • Wang, F.;Zhang, T.;Yang, L.;Zhuo, B.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.361-373
    • /
    • 2007
  • In previous work, an approach based on maximizing the efficiency of an internal combustion engine while ignoring the power conversion efficiency of other powertrain components, such as the electric motor and power battery or ultracapacitor, was implemented in the steady-state optimization of an internal combustion engine for hybrid electric vehicles. In this paper, a novel control algorithm was developed and successfully justified as the basis for maximal power conversion efficiency of overall powertrain components. Results indicated that fuel economy improvement by 3.9% compared with the conventional control algorithm under China urban transient-state driving-cycle conditions. In addition, using the view of the novel control algorithm, maximal power generation of the electric motor can be chosen.

Pilot 규모 석탄 가스화기에서의 탄종별 가스화성능 특성 (Effects of Different Coal Type on Gasification Characteristics)

  • 박세익;이중원;서혜경
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.470-477
    • /
    • 2010
  • The IGCC (Integrated gasification combined cycle) is known for one of the highest efficiency and the lowest emitting coal fueled power generating technologies. As the core technology of this system is the gasifier to make the efficiency and the continuous operation time increase, the research about different coal's gasification has been conducted. Our research group had set-up the coal gasifier for the pilot test to study the effect of different coals-Shenhua and Adaro coal- on gasification characteristics. Gasification conditions like temperature and pressure were controlled at a fixed condition and coal feed rate was also controlled 30 kg/h to retain the constant experimental condition. Through this study we found effects of coal composition and $O_2$/coal ratio on the cold gas efficiency, carbon conversion rate. The compounds of coal like carbon and ash make the performance of gasifier change. And carbon conversion rate was decreased with reduced $O_2$/coal ratio. The optical $O_2$/coal ratio is 0.8 for the highest cold gas efficiency approximately. At those operating conditions, the higher coal has the C/H ratio, the lower syn-gas has the $H_2$/CO ratio.

고출력 SOEC 시스템의 매개변수 연구 (Parametric Study on High Power SOEC System)

  • 뚜안앵;김영상;잡반티엔;이동근;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.470-476
    • /
    • 2021
  • In the near future, with the urgent requirement of environmental protection, hydrogen based energy system is essential. However, at the present time, most of the hydrogen is produced by reforming, which still produces carbon dioxide. This study proposes a high-power electrolytic hydrogen production system based on solid oxide electrolysis cell with no harmful emissions to the environment. Besides that, the parametric study and optimization are also carried to examine the effect of individual parameter and their combination on system efficiency. The result shows that the increase in steam conversion rate and hydrogen molar fraction in incoming stream reduces system efficiency because of the fuel heater power increase. Besides, the higher Faraday efficiency does not always result a higher system efficiency.